
A Flexible Table Parsing Approach
Frank Schilder, Ravi Kondadadi, and Yana Kadiyska

Abstract—Relational data is often encoded in tables. Tables are
easy to read by humans, but difficult to interpret automatically.
In cases where table layout cues are not obtainable (missing
HTML tags) or where columns are distorted (by copying from a
spreadsheet to text) previous table extraction approaches run into
problems. This paper introduces a novel table parsing approach.
Our approach is based on a set of simple assumptions: (a) every
table can be split up in data cells and headers, and (b) every table
can be parsed beginning from a data cell utilizing the overall table
structure. The table parsing is defined as “table flattening” in this
paper. That is, the parsing starts with a data cell and pulls out all
token (i.e., headers and sub-headers) associated with a respective
data cell. We propose a parsing technique that uses two simple
parsing heuristics: table headers are to the left of and above a
data cell. We experimented with trader emails that contained
instrument information with bid-ask prices as data cells. We
developed a clustering and classifying method for finding prices
reliably in the data set we used. This method is transferable to
other data cell types and can be applied to other table content.

Index Terms—Information retrieval, document processing,
tables.

I. I NTRODUCTION

T HIS paper proposes a flexible table parsing approach
that can be applied to a majority of table types.

In our work we applied the approach to financial tables
containing information on various instruments (e.g., bonds,
loans). Extracting information from tables has been shown to
be notoriously difficult in particular when they occur in plain
text (e.g., email) where columns can be easily misaligned after
copying them from another document such as a spread sheet.

The task we define in this paper is calledtable token
sequencingand requires to (a) find all anchor cells (i.e.,
bid/ask prices) in the table and (b) determine the tokens in the
table that are associated with the respective bid/ask price. The
anchor cells are domain-specific and in our case we need to
make sure bid-ask prices are found and extracted reliably. We
also propose a clustering and classifying approach for finding
bid-ask prices in this paper.

Except for the anchor of each sequence given by the bid/ask
price, we are mostly agnostic with respect to the other token
types. We assume general types such as numbers, capitalized
words and a small set of closed class of keywords (e.g. ratings
such as AAA).

Manuscript received on October 31, 2011, accepted for publication on
December 9, 2011.

Frank Schilder and Ravi Kondadadi are with Thomson Reuters
Corporate R&D and Yana Kadiyska is with Thomson Reuters Fixed
Income, USA (e-mail:{frank.schilder, ravikumar.kondadadi, yana.kadiyska}
@thomsonreuters.com).

It is important to note that this table parsing approach that
results in extracting table token sequences can be applied
also to other types of tables. Other tables may have different
anchors and token types, but the parsing strategy will be the
same. Drug dosage tables, for example, contain information
about dosages depending on age or weight of the patient.

Table I, for example, can be parsed in the following way: (a)
determine the anchors in this table (i.e., numbers), (b) iterate
over all the cells in a row that contain anchor cells (e.g.0.8,
1.2, 1.6) and collect cells to the left that are not anchors, (c) go
up the same column for a respective anchor cell and associate
the header cell with the anchor, and (d) go to the right and
collect all remaining cells not yet collected. if we start, for
example with1.2 in the second row and the third column, we
collect Infant Drops 7.5mg./0.8 ml, 27-35, mlas table token
sequence. The remaining tokensChild’s weight (pounds)and
lbs are type cells describing the type (or unit) and need to
be linked to the respective column and row. For this table
they both apply to the top row. This linking requires domain
knowledge and is the final step in the table parsing process.

For our experiments, we used tables containing financial
information where bid/ask prices are the anchor cells. The
tables were often copied from spreadsheets into the body of
an email and the the formatting was not always maintained
The following figure 1, for example, contains a specific format
for the bid/ask price, it contains bonds consisting of security
name, coupon, maturity date and is slightly misaligned with
the headings. The first instrument in this table is specified as
HXN- 9.5-14 40.000-41.000:

Given the specified task, the parser needs to extract all
instruments specified by the respective token sequence in the
table. The task can also be described as “table flattening”
because the two dimensional structure of the table needs to
be understood in order to end up with a sequence of tokens
and a price.

We divide all tokens in a table into two categories. A
token is either a data cell or a authority cell (or authority
header). Data cells are prices and authority cells/headers are
everything else (e.g. coupon, maturity date, contract term).
The distinguishing factor between a data cell and an authority
cell/header is based on the question of whether the cell can
have scope over another cell. The following table, for example,
contains contract terms that take scope over the row of prices.
Here, the contract terms (i.e. 3yr and 4yr) are authority headers
because their scope is vertical. Authority cells, on the other
hand, carry horizontal scope, such as the company namesABC
andEDF in the following example:

13 Polibits (45) 2012ISSN 1870-9044; pp. 13–19

TABLE I
A MEDICAL TABLE CONTAINING DRUG DOSAGE INFORMATION

Child’s weight (pounds) 18-26 27-35 36-53 54-71 72-139 140+ lbs
Infant Drops 7.5 mg./0.8 ml 0.8 1.2 1.6 – – – ml
Liquid 15mg/5ml (tsp) 1/2 3/4 1 11/2 2 – tsp
Chewable 15 mg. – – 1 11/2 2 4 tablets
Tablets 30 mg. – – – – 1 2 tablets
Tablet 60 mg. – – – – – 1 tablet

Bid Ask Bid Ask Bid
Security Px Px YTW YTW ZSPR ZSPR Notes Notes2

HXN 9.5 14 40.000-41.000 34.994/34.198 3244/3164
HXN 0 14 34.000-35.000 30.389/29.639 2938/2863
HXN 7.5 23 24.000-25.000 34.130/32.910 3132/3007
MOMENT 9.7 14 34.000-35.000 40.260/39.262 3773/3672 B 4MM

Fig. 1. A misaligned table containing financial information

3yr 4yr
ABC 23/24 25/27
EDF 26/28 30/32

The four instruments extracted from this simple table
are ABC-3yr-23/24, ABC-4yr-25/27, EDF-3yr-26/28, and
EDF-4yr-30/32. Note that the authority headers may not
always be perfectly align with the columns, as in this example,
but our approach is still able to extract the correct token
sequences.

The focus of our work is to provide a table parsing approach
that derives all single data cells and their associated authority
cells/headers. The output is token sequences of cells and
headers. Since our table parsing approach is mainly domain
agnostic, further processing can be carried out on these
sequences and can factor in further domain-specific reasoning.

The main contributions of this paper:
1) A new approach to table parsing that relies on the

distinction between table data cells and headers and is
capable of detecting even misaligned table structures.

2) Learning data cells (here: prices) on the fly by clustering
and learning a classifier for a specific table.

3) Providing a confidence metric for the table parsing

II. RELATED WORK

Many researchers have studied the problem of extracting
information from tables. [1] provides a good overview of
the field. Table extraction tasks can be divided into different
categories. First, there is the table segmentation task that
requires to correctly determine type of table rows, identify
columns and data cells. Second, there is the table interpretation
task that is more complicated and is an information extraction
task that results in correctly filled templates.

Earlier work focused on tables scanned in from documents
where ASCII text was produced with the help of OCR
programs [2], [3]. In the past, heuristics were employed to
solve the table segmentation task, i.e., determining which word
belong to which column, and similarly for rows. Our approach

mostly avoids the table segmentation task and only requires
the identification of the data cells. Because of restricting our
approach to a simpler task, early errors in the processing
pipeline are avoided. We need to make sure that the extraction
of data cell has high accuracy though.

More recent work presented in [4], for example, addressed
the task of classifying label rows and data rows in
ASCII documents using a machine learning approach
(i.e., Conditional Random Fields (CRF)). One of the
difficulties in a supervised learning approach is how to obtain
accurately and reliably annotated data. Work from MITRE [5]
specifically created a platform to streamline such annotation
effort. Still, a lot of effort needs to go into the annotation of
tables in order to cover a large enough representative sample
of the entire data set. In addition, a disadvantage of a general
supervised machine learning approach is that it will optimize
on the most-frequent table structures and treat infrequent tables
that are still well-formed as noise. In contrast to a supervised
ML approach, we rely on clustering cells in each individual
table and train a classifier for each table on the fly and hence
do not require any annotated training data. This classifier
identifies cells based on the table context and avoids the pitfalls
producing a model based on the most frequent table structures.

Because a lot of useful information are represented in
tables in HTML documents, there have been a lot of
effort in extracting information from Web documents, known
as wrappers. Many efforts are based on manual created
rules. More advanced approaches used machine learning
techniques [6]. The major problem with wrapper-based
approach for information extraction is that those wrappers are
not robust across different sites and slight modifications to
existing pages might invalidate working wrappers.

[7] explored an approach that used the rendering
information from a web browser. The approach is not
limited to HTML table tag, but requires some sort
of table representation in order to produce the spatial
information it derives the information from. Because of

14Polibits (45) 2012 ISSN 1870-9044

Frank Schilder, Ravi Kondadadi, Yana Kadiyska

domain independence, the accuracy reaches only about 50%
for the table interpretation task, but higher results for the table
segmentation task (precision:68, recall: 81). This approach
fails if no table structure representation is supplied and will
run into problems if misaligned table columns are part of the
table.

III. TABLE PARSING

We propose a new technique to table parsing where the
goal is to determine the data cells and the headings that refer
to the respective data cell. Our approach is motivated by the
observation that every table has a set of data cells of the same
types and that headings referring to one cell are mostly to the
left and above this cell. Most importantly, we do not assume
a perfectly aligned table structure. Tables where cells in a
row have shifted when copied from medium to another (e.g.,
spreadsheet to email editor) maintain the constraints of having
the headings to the left and somewhere above. Since we do
not rely on the spatial structure of the tables (e.g., column
separation), we are able to parse even very misaligned tables

Our new approach is based on the following heuristics:
1) Detect data cells with high accuracy (here: bid/ask

prices).
2) Utilizing table structure by parsing the text left to each

data cell and the rows above for detecting header cells
(go left and up)

3) Link all remaining tokens to the right of a data cell
to that data cell (these are often notes or secondary
information)

4) Collect all tokens associated with each cell and therefore
flatten the table

A. Finding header and data cells

In our chosen domain, data cells are bid/ask prices, header
cells can be percent, maturity dates, company names or
specific identifiers (i.e., facilities). As a first step, tokenization
ensures that the basic tokens used in a table are identified.
We developed a specific ANTLR grammar that distinguish
between basic types such numbers, words, special keywords.1

Another ANTLR grammar identified prices and computed
their bid and ask price values.

1) Parsing tokens and prices:We developed a tokenizer
grammar that detects simple token types that are frequent in
trader emails. For example, Words starting with an upper-case
letter are identified as follows:

UPPER :
(INT? ’A’..’Z’ (’A’..’Z’|’a’..’z’|INT) *);

All number tokens are translated into decimals since we use
this number values for various feature when classifying them
as prices or coupons.

1ANTLR is a parser generator based onLL∗ parsing technology. ANTLR
grammars are written in EBNF and can be translated into many different
programming languages including Java code.

Prices are often easily identifiable asNUMBER SEP
NUMBER, whereSEP can be- or / , as in23-26 . However,
there are also cases where there are no separators or where
the price actually describes a different token sequences such
as a date or a version number, as in3/10 or 07-10 . In order
to increase recall and weed out false positives, we developed
a “cluster and classify” approach described in the following
section.

2) Clustering and classifying prices:Another approach to
detecting prices was based on an approach that used clustering
and self-training on the derived clusters. The clustering was
based on the following observation. The Ask price is always
higher than the Bid price. Hence the ratio of the Bid price
divided by the Ask price has be greater than 1. Moreover, the
difference between the two prices is never very large. As a
rule of thumb we assume that the Ask price is never more
than twice as big as the Bid price.

1) Compute the ratio between two consecutive numbers N1
and N2: BidAskRatio = N2/N1

2) Assign the following clusters:

a) If 1 < BidAskRatio< 2, then N1= -1 and N2 = 1
b) Else: N1,N2=0

Note that the assignment is based on consecutive number
tuples in an email. It is therefore possible that number
assignments are overwritten because two tuples fulfill the
cluster assignment as in Ford 8 10 13 14. The tuples 8-10,
10-13, as well as 13-14 fulfill the condition for assigning -1
and 1 for the first and the second number, respectively. Given
the assignment procedure defined above, the numbers are
assigned to the following clusters: 8(-1), 10(-1), 13(-1), 14(1).
Even though the numbers 8 and 10 which are coupon and
maturity date in this made-up example are wrongly assigned
as bid prices, the overall structure of the table will be used to
weed them out of the pool of bid/ask prices.

Given the assignment of a cluster to each number in an
email, a feature vector can be created for each number. These
vectors are then used to generate a multi-class classifier via an
SVM. We used the WEKA package for training this classifier
and also normalized the data set [8]. That means that the actual
training set contains approximately the same number of 0, -1,
and 1 instances.

After training, the classifier is run over the training set again.
Using the following feature set, the classifier is able to detect
the prices that are within the most frequent context for this
given table:

– current_tok current token type (e.g., UPPER)
– prev_tok previous token type
– next_tok next token type
– prev_prev_tok type of the token previous to the

previous token
– next_next_tok type of the next token to the next

token
– pos nth token in a line
– char_pos character position of the middle of the token

15 Polibits (45) 2012ISSN 1870-9044

A Flexible Table Parsing Approach

Note that the training and testing on the same email has certain
advantages over training over an annotated data set of emails
used for supervised learning. If we train over such a large
data set, as we did in a preliminary study, feature weights
are derived via the frequency in the overall data set. The
peculiarities of a certain table are not taken into account, even
though for a given email the position of the price and the
context may be perfectly understandable following a pattern
not often seen in the training data.

After determining the bid/ask prices and tokenizing and
labeling the tokens according to some general types, the token
sequences can be derived via the parsing strategy ofgoing left
and updescribed in the following.

B. Go left

Most authority cells and headers are to the left of a data cell
in tables. If we start with the first data cell (i.e., bid/ask price),
we go to the left of this token and collect non-price tokens
as associated to this particular data cell. A new token can be
added to the sequence only if it had not been associated to
another cell.

This parsing strategy can also be described by head-driven
parsing approach such as Lexical Functional Grammar (LFG)
[9] or Head-Driven Phrase Structure Grammar (HPSG) [10].
Both linguistic approaches combine syntactic and other
constraints in one grammar formalism. In LFG, the c-structure
is derived by syntactic grammar rules. In addition, semantic
information — the so-called s-structure — can further
constrain the c-structure.

For the table parsing, we assume a simple context-free
grammar that parses tokens per line

LINE --> INSTRUMENT * NL
INSTRUMENT --> TOKEN* PRICE

Since the goal of the table parsing is the derivation of
token sequences per price, another structure is derived via the
parsing. This table signature structure (ts-structure) is added
as further constraint onto the c-structure.

INSTRUMENT([Price(Value)]) --> PRICE
INSTRUMENT([TokenType(Value) | Rest]) -->

TOKEN INSTRUMENT(REST)

After parsing the first instrument, a so-called signature
is derived, that constrains the subsequent instruments and
completes them, if necessary. Figure 2 shows the derivation
for the line ABC 23/24 25/27. The first INSTRUMENT is
derived up to the first PRICE. The signature derived is the list
[UPPER(ABC)]. This signature is then used to constrain the
subsequent instruments in this line. In this case, the company
nameABC is added to the next price.

The constraints invoked on the instruments in the line can
be of different types. If the signature of the next instrument
is a sub-sequence, further authority cells are added, as in the
example line. If the signatures do not match, on the other hand,

the information from the previous instrument is not carried
over.

C. Go right

Occasionally, there are unassigned cells to the right of the
anchor cells. In a last step, these cells are collected and
added to the right-most anchor cell. In Figure 1, the spread
information and additional notes are added to the respective
anchor cell (e.g.,40.260/39.262 3773/3672 B 4MMare added
to MOMENT 9.7 14 34.000-35.000)

After all tokens have been parsed and the authority cells
have been applied to all instruments, we can go up the table
and associate other sequences or data headers with a token
sequence.

D. Go up

There are two cases for finding further tokens for a token
sequence above the line where the data cell is in. First, it is
possible to find a longer token sequence in an earlier line. For
example, the name of the instrument is only mentioned in the
first line including coupon and maturity date. All subsequent
lines omit the name, but have different coupons and maturity
dates.

Ford 3.4 12 13-14
4.5 13 20-21

In order to add further authority cells to sequences,
we defined a signature for each sequence. The first
line in the above example has the following signature:
[UPPER, NUMBER,NUMBER]. The second line, on
the other hand, has the signature[NUMBER,NUMBER].
If we find another sequence above that has a super-signature,
the missing tokens (here: Ford) are added to the instrument
below.

Second, there are authority headers in header lines. Header
lines are defined as lines without any prices. Those authority
headers can be of two types: (a) the tokens can be token types
such ascoupon or (b) the authority headers are additional
tokens that are added to the token sequence (e.g.,5yr
indicating the contract term).

In order to match these authority headers to the token
sequences, we utilize the Hungarian Algorithm [11]. This
combinatorial optimization method is used for assignment
problems. For our purposes, we need to define an×n matrix
consisting of the instruments in a line and the authority cells
in a line above. For the Hungarian method, the instruments in
one line and the authority cells in a line above are represented
in form of a a complete bipartite graphG = (S, T ;E) where
s ∈ S instruments need to be matched tot ∈ T authority
cells in the line above. For each link between all vertices, a
non-negative costc(s, t) is defined. We define the cost by the
distance between the beginning of the price information of
the instrument and the authority header. The cost matrix for
the following example table is transformed by subtracting the

16Polibits (45) 2012 ISSN 1870-9044

Frank Schilder, Ravi Kondadadi, Yana Kadiyska

LINE[UPPER(ABC)]

INSTRUMENT[UPPER(ABC)]

TOKEN

ABC

PRICE

23/24

INSTRUMENT[UPPER(ABC)]

TOKEN

ABC

PRICE

25/27

Fig. 2. A simple table parse tree

lowest number in each row and column from all the cells in
the same row and column. Then the matching is indicated by
the 0 in each row and column for this simple example.2

3yr 4yr
ABC 23/24 25/27
EDF 26/28 30/32

Cost metric:(
5 1
14 10

)
1) Reduce the rows by subtracting the minimum value of

each row from that row.
2) Reduce the columns by subtracting the minimum value

of each column from that column.
3) Select a matching by choosing a set of zeros so that each

row or column has only one selected:(
0 4
4 0

)

IV. CONFIDENCE METRIC

As our approach is mostly used as a part of a table
extraction workflow, it is very important that we provide a
confidence score to identify tables we can derive information
from with high confidence. This main workflow can thus avoid
processing complex tables. The Confidence measure is defined
as a number between 0 and 1 indicating how confident we
are about the correctness of the output instruments. Given a
confidence metric we are able to identify a subset of the test
set where we can extract instrument token sequences with high
accuracy (i.e.> 90 precision/recall).

A. Feature set

The most important factor in the confidence estimation
is the complexity of the input itself. For example, our
system performs better with tables that have only one level
of sub-headers compared to nested tables. Features in this
category include the number of blank lines in the table or
the number of lines where the number of token signatures is
not same as the one from line above.

2There are more steps to consider for a more complex example

The other set of features in our confidence metric is related
to the system’s performance on the input. Features in this
category include the number of prices that are also dates or
the ratio of numbers to prices in the email.

B. Gaining confidence

We developed a binary classifier to classify between
complex and simple input texts according to our system. This
will let the user of our output decide whether to use it not.
We had a training set of 202 emails where the instruments
were identified. We used a threshold on the F-score of our
system on those emails to create training data for our classifier.
We experimented with different thresholds on the F-score and
found that 0.7 works the best. With this threshold, we had
around 130 positive examples and 72 negative examples for
the classifier. We used an SVM to build the classification
model. We tested the model on the same data using 10-fold
cross validation. The accuracy of the classifier was 85.8. The
precision and recall of the positive class were 89.8 and 91
respectively.

V. EVALUATION

The evaluation we carried out had two phases. First, we
needed to show that the table flattening achieves high precision
and recall. Secondly, we used the table flattening in the table
extraction workflow that produces instrument templates used
to populate a data base of instruments and their bid/ask prices.

A. Data

We obtained 202 emails of various length and annotated
the token sequences for each price found in the emails. In
addition, we annotated the tokens by token type, as in the
following example:

1238023.txt GS 4.5 06/10 185/175
1238023.txt NAME CPN MAT PRICE

The token sequence task requires to check whether these
tokens from the first line are part of the tokens derived from
the table parsing process. The instrument slot filing part also
checks for the correct slots to be filled. In this example, the

17 Polibits (45) 2012ISSN 1870-9044

A Flexible Table Parsing Approach

TABLE II
RESULTS FOR(A) TABLE SEQUENCE TASK(B) TABLE SEQUENCE TASK

WITH CONFIDENCE METRIC

Precision Recall F-Value
micro-averaged
Table Parsing 0.84 0.85 0.85
Baseline 0.34 0.36 0.32
macro-averaged
Table Parsing 0.81 0.81 0.81
Baseline 0.39 0.37 0.38

Precision Recall F-Value
most confident top 60%

Table Parsing 0.88 0.85 0.86
Baseline 0.34 0.34 0.34
most confident top 75%

Table Parsing 0.90 0.89 0.89
Baseline 0.33 0.33 0.33

instrument name, the coupon, maturity date and the price have
to be placed into the respective slot.

In addition to the original emails, we also generated
randomly distorted tables from the gold data token sequences
in order to show the robustness of our approach. Section

B. Results

We carried out three evaluations. The first one was
concerned with matching the token sequences via the table
flattening resulting from our table parsing technique. The
second evaluation investigated whether the confidence score
could improve the overall precision and recall values for a
subset of the emails from the test set where we computed high
confidence. Finally, we tried to incorporate the table flattening
into the email parsing workflow and derive templates for
instruments. this last task is the most challenging task, but we
can show that using the table flattening that the performance
improves overall.

The table flattening module pulls out token sequences that
were compared against a token sequence gold data file. A
parsed token sequence was correct if it covered the same token
(and possibly more tokens) from the gold data. Table II (a)
summarizes the results from our experiments comparing the
Table Parsing approach with a Baseline approach. The baseline
uses the same price tagging and only takes the tokens to the
left of a price.

In order to boost performance we utilized the confidence
metric and excluded a certain percentage of the test set based
on the confidence score. Table II (b) indicates two different
cup-off levels where the overall performance significantly
improved when only a certain percentage of emails were
tested.

In a final experiment, we automatically generated tables of
varying complexity from a quote database. Each record in the
database corresponds to a quote sequence with all the fields
associated with that quote. Each record also has an indication
of the source of the record. We grouped records by source
and generated a table corresponding to each source. The most
important field in a quote sequence is the company name. A

Description
1 No randomization
2 A
3 B
4 C
5 A+B+C

1 2 3 4 5

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Table Combinations (see table)

F
−

S
co

re

●

● ●

●

●

Evaluation of different automatically generated tables

(increasing complexity)

●

Approaches

baseline

table parsing

TABLE III
RANDOMLY GENERATED TABLE COMPLEXITY

company can have more than one quotes in the same source.
So within each source, we grouped the records by company
name. We introduced randomness in the following aspects of
the table generation:

A We always generate the company name for the first
instrument (e.g., Ford 6 15 30-32), but instruments in
subsequent lines that are of the same type do not need
to have this authority cell in order to be correctly
understood.

B A line in the table can have more than one sequence
C The company name can appear to the left of the quote

sequence or at the top.

We generated tables of different complexity using different
combinations of the above mentioned features.

VI. CONCLUSIONS

We presented a table parsing approach that is based on
a heuristics of detecting anchor cells (i.e., bid/ask price)
and derives token sequences represented in the table. The
proposed approach does not required any training data and
is unsupervised regarding the clustering and classification of
the so-called anchor cells.

Even though we focus on financial data, the approach can
be easily adapted to other domains. Moreover, the approach
does not rely on the spatial information encoded in HTML
tags and shows a robust performance when tested on tables
where noise in form of misalignment is introduced.

18Polibits (45) 2012 ISSN 1870-9044

Frank Schilder, Ravi Kondadadi, Yana Kadiyska

ACKNOWLEDGMENT

The authors would like to thank Khalid Al-Kofahi, VP
Research, Thomson Reuters and Ted Healey, Global Head of
Web Development, Thomson Reuters for supporting this work.
We also would like to thank the anonymous reviewers for their
valuable suggestions.

REFERENCES

[1] R. Zanibbi, D. Blostein, and J. Cordy, “A survey of table
recognition: Models, observations, transformations, and inferences,”Int’l
J. Document Analysis and Recognition, vol. 7, no. 1, 2004.

[2] M. Hurst and S. Douglas, “Layout and language: Preliminary
investigations in recognizing the structure of tables,” inProc. of Int’l
Conf. of Document Analysis and Recognition, 1997.

[3] P. Pyreddy and W. B. Croft, “Tintin: A system for retrieval in text tables,”
in Proc. of Int’l Conf. of Digital Libraries, 1997.

[4] D. Pinto, A. McCallun, X. Wei, and B. Croft, “Table extraction using
conditional random fields,” inProc. of SIGIR, Toronto, 2003.

[5] M. Vilain, J. Gibson, B. Wellner, and R. Quimby, “Table classification:
An application of machine learning to web-hosted financial documents,”
MITRE, Technical Report, 2006.

[6] W. Cohen, M. Hurst, and L. Jensen, “A flexible learning system for
wrapping tables and lists in HTML documents,” inProc. of WWW, 2002.

[7] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak,
“Towards domain-independent information extraction from web tables,”
in Proceedings of the 16th International World Wide Web Conference
(WWW 2007). ACM Press, May 8–12, 2007, pp. 71–80. [Online].
Available: http://www2007.org/paper790.php

[8] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support
Vector Learning, B. Schoelkopf, C. Burges, and A. Smola, Eds. MIT
Press, 1998. [Online]. Available: http://research.microsoft.com/\∼jplatt/
smo.html

[9] R. M. Kaplan and J. Bresnan, “Lexical-functional grammar: A formal
system for grammatical representation,” inThe Mental Representation of
Grammatical Relations, J. Bresnan, Ed. Cambridge, MA: MIT Press,
1982, pp. 173–281.

[10] C. Pollard and I. A. Sag,Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press, 1994.

[11] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” in
50 Years of Integer Programming 1958-2008, M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi,
and L. A. Wolsey, Eds. Springer Berlin Heidelberg, 2010, pp. 29–47.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-68279-0\ 2

19 Polibits (45) 2012ISSN 1870-9044

A Flexible Table Parsing Approach

