Map Building of Unknown Environment Using
L1-norm, Point-to-Point Metric and
Evolutionary Computation

Jaroslav Moravec

Abstract—In the present paper, a method for building a map b
an unknown environment (SLAM) derived from the ICP
algorithm using point-to-point metric is proposed. The polar-
scan matching technology is used for estimation ahe robot
location change between two scans in sequence estien the
correct position of the robot. Since map building $ fairly time-
consuming, the algorithm of differential evolution(DE) is used in
the calculation. This efficient optimizer provides very good
results in different types of small office environnent
(unstructured and structured). The new type of an forithm for
map building is based purely on simple geometric pmitives—
vectors and integrates the modern evolutionary algghm—DE.
The presented algorithm falls into the wider groupof geometric
map builders and is able to build a map of indoormostly office,
environment without moving objects.

Index Terms—SLAM, robot localization,
robotics, differential evolution, L1-norm.

evolutionary

I. INTRODUCTION

represented by geometric primitives such as lirdgles,
points or curves (b-spline curves) etc. The geameaiodel of
environment is created from these elements. The obthe
position estimator might be compiled by using vasidypes
of algebraic criteria [18, 19, 20, 21]. (C) Therthand these
days probably the widest group is the one usinghinations
of algorithms from two previous groups (so callegbiid
algorithms) or it uses very specific patterns theiresented
the model of the world and different methods faralkization
and map building. It's for example the case of &vevhen a
map is represented by a cloud of points, alteraebtiby
different kinds of landmarks [17] like RFID, soustdurces
etc. Relatively new and perspective way in thedfief map
building and navigation is called cognitive map8,[39]. This
approach exploits and integrates more informatmurees. A
precise geometric map similar to [13] does nottehése.
Conventional methods for creating a map of wukm
environment such as e.g. these publications [231],use
gradient optimizers. But this is an approach a dewades old.
The advantages of gradient optimizers are theipkity and

SlGN|F|CANT effort of many different research groups in tthp|ementation Speed_ They still interest many aeshers

area of the map building has brought good resultthé

thanks to these qualities. They may be found eng[40].

last several decades. The integration of modemMowever, they have their insignificant limitatiorBue to an

evolutionary algorithms is not taken for grantedttimuch in
this field. Disadvantage of nearly all EA (evolutary
algorithms) methods is a necessity to find properking

intensive research in the field of evolutionary quier
technology and fairly huge amount of publicatiomslgzing
their possibilities on different types of problen&gd methods

parameters. Many EA methods suffer from prematuigave come to the foreground in the area of robatsvell.
convergence to local optimum, which they’re notead Their application is broad — map building using @8D laser
release from any more. Algorithms for the map boddare scanner, global and local localization, semantissification,
very sensitive about the failure of the estimatohioh the area of machine learning. A relatively big dismntage is
performs the estimation of positon and turninghat they may also extend significantly the impletagon of
transformation. All these exact reasons lead toctelea basic navigation algorithm. MoteCarlo algoritsrtiie most

differential evolution optimizer as an appropri&# tool, as it
provides very good results for a given task.

There are many different approaches in an areheofdbot
localization and map building which can be classifiinto
several main groups. The amount of publicationgarticular
groups is approximately the same. (A) Probabiligtgprithms
usually use different versions of an occupancy.gkidnap is

common optimizer that is possible to come acrossisiised
in the connection with probabilistic algorithms B,13].

In 1998 an interesting article [42] based darid Model
Genetic Algorithm (IGA) was published. The theme
distributed GA can be found earlier for example, [43]. IGA
is a derivative of the genetic algorithms that veonkith
several populations which search functional spacgarallel.

represented by set of occupancy probability eveiytua The authors were successful to prove that IGA plesibetter

emptiness probability. The map is formed by a $etedis in
the shape of usual square area [23, 9, 3, 13].MBp is
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results especially for linearly separable problemsparing to
SGA [48] that is used e.g. in [26]. Using IGA opizer as a
computational accelerator also depends stronglg type of
the basic method(s). These methods were used fer
purposes of localization and map creation (SLAM)[45],
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results like that may be found in the article [5g well.
Practical use of the SLAM algorithm with the contple
analysis of the issue can be found e.g. in [25k Base of the
presented method is formed by the probabilisticupaocy
grid [23, 13] again. Kwok et al. presented a srsgaitly in [16]
which compares

Evolutionary computations are used to accelerate rttap
building process. The pose estimation process sedan
comparison of a set of simulated data from a VirRBLS
(two dimensional laser scanner) from positions ioleth by
using the EA process and scan from the real 2DL8.cdah

the performance of three differerdenoteP,;) = (x,y, @), Py = (x,y, @), i,j €N, 3j|Pyy, =

evolutionary algorithms SGA [48,49], PSO [53] andp, ~P,; is a real and simulated pose and from the text

AntSystem [52]. The tested EA methods solve thre%‘boveP

dimensional problem — here the dimensions are septed by
X, Y coordinates in the Cartesian coordinate system the
third dimension is then the anglethat includes the robot’s
view direction along with axis X. The disadvantagfethis
approach is the necessity of using a fairly hugentmer of
individuals in the population and substantially Heg
computation demands related to that. Similar tesare to be
found in paper [24] as well.

The differential evolution algorithm (DE) quosed by
Kenneth Price a Rainer Storn [36] is used in tldpgy as an
efficient and powerful computational acceleratoptijmizer).
However, DE is only suitable for certain types oblgems —
see [14]. SLAM under low noise levels falls to sulitable
groups of problems as well. Finding of the correcirking
parameters of the optimizer is not so easy andllysiakes a
fairly long time. Valuable results of a researchhis area can
be found in [2, 12, 37, 14, 30, 22].

Il. POSEESTIMATION IN PARTIALLY KNOWN ENVIRONMENT

Consider a general evolutionary SLAM problem
@
mianXf(g(x)) OrmaxxEXf(g(x))
Denote byfyprs, forr— the optimal values of this problem and
by f* and f, the maximum and minimum value bbver X.
x € X represents optimal trajectory in state space (ifors
example:x,y, a is a robot posey,y in Cartesian coordinates
anda is heading with regard to the axis X, and of ceua#i
working parameters of the presented methods havéeto

included as well)g(...) represents sensing model and a pose=

estimator (in the case of the SLAM problem, presértere, it
is F, or F; strategy — see below)f(...) represents
evolutionary pseudo-random process — i.e. DE algorifor
example.

Definition: Given ¢ € (—x, +), a functional¥ € X is said
to be ancs-approximate solution of the problem (1) if possibl
solution exists in the sense

If (X) = fopr-| < €lf. — fopr-| OF
If(X) = fopr+| < €lf™ — fopr+l

Unfortunately,X¥ € X strongly depends og(...) and “system”
represented by robot, environment and all movingab and
is non-separable and non-stationary (so calledri&ng. In
this task robot always affects itself through otlobjects
moving in the given environment and that’s thakihe used
control systems. The presented waransforms the general
optimization problem utilizing evolutionary comptitan to:

)

Tz,sif(g(x)) - fEA(g(x)) D(f, fea) ER, ®)

fea ~ pseudo-random process
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e Psjy € X, Dey = [Veqr), ey, - Veam), 1 €N,
Ve Ve £ Linax 1<m=<Crey and
Ds(jy = [Vs(1) Vsyp s Vs J E N, VUs|VUs < Linax
1<n<Cyqy,, m<n, the real and simulated sensing.
sim = Creqr- @ IS heading with regard to axis X. For every
P.(; itis necessary to create setRyf;),j € N. @g4r = iS A
detection angle of the real 2DL&,, = 0.5° is a resolution
of the real 2D LS - i.e. 361 beams can be usedfample.
Yaee 1S @ detection angle of the pose estimgtor) i.e.y .. IS
the angle which the matching process worksyjpn, is set to
/5 for all experimentsPy, [T € X, Lyq, iS @ beam limitation
given by used sensor witi,.,; beams.C,;,, denotes the
number of simulated beams. Environment is represeny set
of short lines. EA methods use set of individulg;,. From
the theoretical point of view, only one poi,,, Py, €
P, defines the correct robot's pose. In the real waaltd
thanks to the existence of noise (estimatedSpy or S,,
function), more than one point can provide well extable
result(s). Every individual of the EA represents grossible
solution which is evaluated in the sense:

C=|A-B|, 4)
where
Usr(l) Vs:(z) vSI(3)
Usi(2) Vsi(3)
Vsi(3)
vst(n—m+1) vsr(n—m+2)
vsr(n—3)
vsr(n—z) vst(n—l)
Usr(nfl) vSl(Tl) vSl(Tl+l)
Usr(n) vSl(Tl+1) vSl(Tl+Z)
Usr(mfl) vsl(m)
vsr(mfl) Usr(m) vsl(m+1)
vsr(m—l) vst(m) vsr(m+1) vst(m+2)
vst(n—l) vsr(n)
vsr(n—l) vst(n) vsr(n+1)
vst(n+m—3)
Usr(n+m73) vSI(Tl+TH*2)
vsr(n+m73) Usr(nerfZ) vSI(Tl+TH*1).
Ver) Ve(2) Ve (m)
B = ,A,B aren X m.
Yey Ve Ve(m)
Vs'(1.n) = Vs@.n) » Us'((n+1).(n+m-1)) = Vs(1.(m-1)) »

a=vg, b=v,;niisrow, m,jiscolumn;
T _ m m m m
u' = [Ty X oy Xt Gt o By Cn ]
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MatricesA, B are expressed generally in (4) g, = 2m. If

Yaee 1S SMaller thar2m, number of rows of the used matrices .«

will be adequately smaller too. Presented map mmgld
algorithm is based on two independent strategiesth B
strategiesF, andF; enable correct € X estimation.F, and

F4 are given by equations:

©®)

i=t
Flp

— — n
oti=l) = {Srz = Argmaxp,(yy)MaXy, |z

i {1' if (lagy = bapl < Sp2)
00, if (lag ) = bapl > Sp2)

59

1
VX, y1x,y ER, Sy e Popes Spo = o+ g(byjt+a)+1,6= 000

(6)

)

i=t
Fslp

= = ; i n
oti=l) = {Sr3 = argmmps(x,y)mmu”)|l-:1

<zm {|a(i.j>— baplif agj < Lmax
j=1

0' if a(i,j) = Lmax
thylxty ER vSr3 Ad Popt ru(i)l;lzl € {0’1}

1
uglicr = Xflaey = bapl s Sps = [;+ (e:a;)) + 1]

whereg; is a slope of the accuracy curve of the used 2DL
(for example;]%) — it is classic linear dependency accordin(A2

to the manufacturer recommendationss the number of all
collected scans from the real 2DLS.

Here, S,, andS,; represents the fitness value of the be<az

founded estimated poses,; andS,, represent equations of
the linearized model of the 2DLS sensor—simple eomdel
for one(every) beam. Correct pose and heading agtm
according to the selected strategy is giverPfy and heading
a of the robot is given by:

(6)

F3: minug|p-, = (index)k , Fy: max u,|j-, = (index)k ;
1
Faozia= (%tp(k - 1)) + (Eydet)

‘index’ meansk-th element of theu,vector, for which the
fitness function takes the smallest;) or the biggest(F,)
value.

Sensorial data from 2DLS are used only (no datanfro 4z

odometry). The pose estimator described in hetmaged on
point-to-point metric. It is the core of the propdsSLAM
method. F, or F; strategy is used to dissimilarity
measurement—dissimilarity between simulated vebtoand

Fs
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Fig. 1. Projection of the Fitness function of fhgandF, strategy to 3D space
- exampleF; - robot is in the place with min. Fitness functi@h - robot is in
the place with max. Fitness function.

TABLE |
PROPOSED GLAM ALGORITHM

Input dataP,..,..; (x, v, @) — Start (alias actual) robot’'s poseetrespondin
to theD,,y, De(;) — Set of sensorial data from 2DLGM - empty global map.

Al 1 Approximate scan D,y by set of lines Upke
Nk+0
2 Compute parameters of the U,, necessary for
SLAM.
3 Insert the U,keNk+0into GM
4 forall D,p; i€EN,i€{2,..,p}
Create TM based on the Piuvar(%,y, @)
_and GM.
6 Find correct pose and heading P, for D),
_use the TM and selected strategy Fsor
F, accelerated by DE.
Al 7 Approx. actual D, vector, by set of
_lines Up,keNk=0.
8 Compute params. of the U, and insert
_ Uy into the LM.
A2 9 Use the LM, build a new set of lines Unew:
_suitabe to be inserted into GM.
_Clear LM. Insert the new set of
_lines Upew into  LM.
10 Insert all lines from LMto GM and
_clear LM.
A5 11 Use heuristic rules, merge all possible
_lines in GM, if it is possiblle.
12 end for

13 Final map ‘refinement’ — GM map
Output dataGM — Lines list — global map of environmef,(x,y, a) — Se’
of positions. Robot's pose and heading correspgnith D, ;, vectors.

Key: TM — Temporary Map of local environment. This map iscuaé pos
estimation utilizing EA computationdM — Local Map contains all line

the real sensin@,. F; strategy has universal features and i:found inD, . Al.. AS individual parts of the gSLAM algorithrA1 consist

suitable for structured or unstructured environméog or
small corridors (hallways) or environment with oithout
moving objects.

of a recursive line splitting marked B4 and line pose improvements by L
algorithm marked as B2. A3 use classic ray-tracingtep A4, EA méhod is
used according to the equation (4). Line 13 caagi®nally omitted.

Generally,F; provides somewhat worse results at heading

estimation—of about 5—7 percent in comparisoff{oF, has
identical features t@;, but it is not suitable for work in long
hallways and has quarter noise resistance abilitidg — see
[54]. F, is suitable for small and very structured envirenm
with or without moving objects.

At correct pose estimation and if searching are&0x60cm
for example, equation (4) must be evaluated 60 x3600
times. It takes a long time. DE optimizer is aldeestimate
correct solution approx. 25-35x faster. Fig. 1 depFitness
function projection of théF; and F, strategy to 3D space—
identical environment and identical robot’s posaded.
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DE optimizer in this case seeks for an optimum {mium or
maximum) according to they, (alias F5: minug|ie,, Fa:
max w|?-,, see (3) — (6) ) value for every individuum of the
population. Fig. 1 shows large area 600 x 800cm bttter
understanding.

lll. GSLAM ALGORITHM

Proposed gSLAM algorithm uses raw 2DLS data to
estimate the correct pose in polygonal environmbgt
modified simulated-point-to-point matching techrequin
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temporary mafM which represents the temporary polygonaB)
model-view from the last estimated correct pBsg in GM —
global map.TM is obtained by using 2D ray-tracing. The
complete gSLAM algorithm is described in Table hd® the 2
correct robot’s pose is found according to th¥, the actual
sensorial datd,;, are approximated by set of lines and the
local modelLM is created from them. The set of lines is
confronted with the globalGM map of environment
(previously built) and some parts of lineslid are marked as

Use SEF algorithm té; points and exclude all unsuitable
points fromb;. New set of points will bé;. Use IEPF
algorithm tob;".

Use linear regression (LR-LSQ) [32], [15] algorithim
merge two consecutive lines if it is possible +afin
refinement of every line in the sense of (LR-LSQ)
algorithm.

IAbscissae of thé& M map cannot be inserted directly. Several
atomic rules were defined enabling to estimate emly,
which part of the line is to be inserted into th¥ — see Table

II. These rules are designed to be useful for foréne
algorithms. There are 17 atomic rules — see FigSultable
combinations of atomic rules form four -classificati
sentences. The classification sentences form aifitadion
strategy. The number of applied classification seceés is not
known a priori and is variable. The proposed cfasdion
sentences (insertion process of M into GM):

suitable for inserting intoGM. This process uses severa
heuristic rules.

@DHOEDOD
S@@OODOBGDO

Fig. 2. Flowchart diagram of the gSLAM — sequentialering of the Al .. A5
algorithms.

1) If two abscissae AB and CD do not lie on an idaitime
(consecutively), the distance of C and D pointanfrthe
line identical to abscissa AB is shorter than tingt] CD
abscissa does not overhang the boundary C and ridspufi

The flowchart diagram of insertion process is diguicin AB abscissa and the angle between AB and CD islemal

Fig. 3. The recursive line splitting algorithm (LLESQ) based than the limit. remove CD abscissa. (Atomic rul 12
on Ll-norm is used. ‘LocalMgiM)’ serves like a helper 2) mit v issa. ( lc rulekll 12,
only. Table | contains individual steps of the pregd '

gSLAM algorithm. gSLAM consists of 5 main partsput 2) If two abscissae AB a CD do not lie on an identidaé

data areP,..,q:(x,y, @) — start (alias actual) robot’'s pose —
corresponding to thB, ), D, ;) — set of sensorial data 2DLS.
Output data ar& M — global map of environmen®, (x, y, )

(consecutively), C point and D point overhang thel e
points of AB abscissa, the distance of A and B {saio CD
abscissa is shorter than the limit and the angierden AB

and CD is shorter than the limit, let kM parts of CD
abscissa, which overhang AB abscissa. (Atomic rije3,
4,7,8,9, 10, 13, 14, 16).

3) If two abscissae AB a CD do not lie on an identigad
(consecutively), C point overhangs AB abscissa tred
distance of the second point to AB abscissa istless the
limit, let in LM part of CD abscissa, which overhangs AB
abscissa only. (Atomic rules 1, 2, 3,7, 12, 13,1H).

4) If two abscissae AB a CD do not lie on an identioad
(consecutively), D point overhangs AB abscissa el
distance of the second point to AB abscissa istless the
limit, let in LM part of CD abscissa which overhangs AB
abscissa only. (Atomic rules 1, 2, 4, 6, 12, 13,118.

The line fitting algorithm (marked as Al in Fig. Bses The atomic rules are formularized by AND logic ager
approximation of a point set by multi-line. The geated line and rules 16 and 17 are placed inside of the 4dition
fitting algorithm uses combination of several metho- clause.
successive Edge Following — SEF [31] and Iterafind Point Four classification sentences represent a heusstiema
Fit (IEPF) [10, 6, 27, 28, 29]: that only enables to define such parts of KM map which

are suitable for inserting into th6M map. If any “less
TransformD, vector from polar to Cartesian coordinates. suitable” abscissae appear EM, classifier inserts such
abscissae int&dM without any change. Usually perpendicular
abscissae are considered — perpendicular to existails of
the environment model.

— set of estimated positions resp. robot's pose lamting
corresponding wittD, ;y vectors.

CLASSIFIER

* A small circular arrow means that a classificatgentence can be repeated
according to the actual state of tHeM map, until all abscissae are
successfully classified. Deadlock is handled.

Fig. 3. The flowchart diagram of the lines relaship classifier.

A. The Line Fitting Method

1)

2) Eliminate all pointsh; where:vb;(x,y), Ab;(x,y) so that
bi(x,y) € {b;(x,y):||bi, bj|| < 6,j =i} in E?, & i

is
constant; 10cm for example.
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TABLE Il
ATOMIC RULE LIST — INSERTIONPROCESS
Nr. Atomic rule Description
1 AB_wholeLeftOrRigt CD Abscissa A_B lies on the left or right side
of CD abscissa.
2 CD_wholeLeftOrRigt_AB Abscissa C_D lies on the left or right side
of AB abscissa.
3 C_overhanglL <= L1 Point C of CD abscissa does not overhang
- any of A or B points
4 D_overhanglL <= L1 Point D of CD abscissa does not overhang
any of A or B points
Point C of CD abscissa overhangs one of
5 C_overhangl > L1 the outer points of AB abscissa AB.
Point D of CD abscissa overhangs one of
6 D_overhangl. > L1 the outer points of AB abscissa.
Intersect Cp of the line passing the poir
7 C_outside_AB = true perpendicular to AB abscissa does not lie
between AB points.
Intersect Dp of the line passing the poir
8 D_outside_AB = true perpendicular to AB abscissa does not lie
between AB points.
9 A_CD_dist<L2 Distance of the point A from the line

which the CD abscissa lies on.

Distance of the point B from the line
which the CD abscissa lies on.

Distance of the point C from the line
which AB abscissa lies on.

Distance of the point D from the line
which the AB abscissa lies on.

Angle of AB and CD lines

Distance of the C point and intersect Ap
line passing the point A perpendicular to
line on which the points C,D lie is shorter
than distance of the point C and intersect
Bp line passing the point B perpendicular
to CD.

Distance of the point C and intersect Bp
line passing the point B perpendicular to
line on which the points C,D lie is shorter
than distance of the point C and intersect
Ap line passing the point A perpendicular
to CD.

Distance of the D point and intersect Ap
line passing the point A perpendicular to
line on which the points C,D lie is shorter
than distance of the point D and intersect
Bp line passing the point B perpendicular
to CD.

Distance of the D point and intersect Bp
line passing the point B perpendicular to
line on which the points C,D lie is shorter
than distance of the point D and intersect
Ap line passing the point A perpendicular
to CD.

If the rule has an operator (<,>,= et.c) it is on$ed in this form. If no
operator is present, any type of operator can bd umsalgorithm in the sense
of the particular rule. For example_‘overhangL’ is real a number at
computations and.1l’ is constant.

10B_CD_dist< L2

11C_AB_dist< L2

12D_AB_dist < L2

13angle_CD_AB < L3

14 C_closeTo_Ap = true

15 C_closeTo_Bp = true

16 D_closeTo_Ap = true

17 D_closeTo_Bp = true

If any abscissa is transformed using any classifina
sentence, only suitable parts of it are moved bhaddd map.
Once classifier finishes its job, all abscissaeraoeed toGM

at once. Fig. 4 shows a graphical representaticheftomic
rule list in Table Il. used at an insertion procdsss a classic
conceptional relation between two abscissae ABGIDd
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C_closeTo_Ap, C_closeTo_Bp,
D_closeTo_Ap, D_closeTo_Bp

C_overhangL, D_overhangL

B \'A B o
w D p A" ¢
4' 12 > L1 > ) L2 L
Bc\& B N
.E*Bp D 79?:[)1 Ap .C D -9?5‘[?_

A_CD_dist,B_CD_dist,
C_AB_dist, D_AB_dist

C_outside_AB, D_outside_AB
A_inside_CD, B_inside_CD,

C_inside_AB, D_inside_AB

AB_wholeLeftOrRigt_CD,
CD_wholeLeftOrRigt_AB

\Pi "D
\ \ B
L5 p2\ .
% \ B
pir A 4
\ \
C 4"\92

Examples of the presented rules:

* C_closeTo_Ap = true, C_closeTo_Bp = false,

* D_closeTo_Ap = true, D_closeTo_Bp = false

« C_overhangL = L1, D_overhangL = -1*L1

« C_outside_AB = true, D_outside_AB = false,

« C_inside_AB = false, D_inside_AB = true

*A_CD_dist=L, D_AB_dist=L

«angle_CD_AB =

« AB_wholeLeftOrRigt_CD = trueCD_wholeLeftOrRigt_AB= false

*L, L1, L2, a are elected constants at SLAM process.

Fig. 4. Atomic rule list, conceptional relation Wween two abscissae AB and
CD; graphic representation.

B. Merging — minimizing the number of abscissaé Mi

Once the list of abscissae suitable for insertiitg GM is
completed, it's inserted int&GM immediately. Merging
process ensures minimum and acceptable numbersoisabe
in GM. Merging process is not a necessary step in drder
final map to be fully consistent. The method présernin here
is based on Skrzypc#gki [33], [34] and Crowley [6], [7], [8],
but the method is significantly modified. Similartp the
insertion process, the merging process uses the smsic
scheme as the insertion process — see Fig. 3. Mdmoged
merging process consists of 3 classification sessn
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1) Abscissae AB and CD lie consecutivey in a line amel
distance of end-points is shorter than the limB &d CD
will be concatenaded. (Atomic rules 13, 11, 1218, 19,
20, 21, 22, 23).

2) If abscissae AB and CD intersect and the distaricang
point A, point B, point C or point D from interse&B and
CD is less than the limit, cut-off this small petion.
(Atomic rules 24, 25, 26, 27, 28).

3) The intersect of the AB and CD does not esist anydp@int
v, ={A,B,C,D} is close to any other pointp, =

The merging process occurs only in a limited ramde
possible combinations of AB and CD positions, whiglalso
sufficient for the construction of a high-qualitgator map. If
unclassifiable schema appears, it is inserted @b without
any change. Such problems appear if random perpgadi
abscissae, perpendicular to walls in environmeatehto be
processed for example.

ABCD_Axyp_intersect_overhangL,
ABCD_Bxyp_intersect_overhangL,
ABCD_Cxyp_intersect_overhangL,
ABCD_Dxyp_intersect_overhangL

A_Cp_dist,A_Dp_dist,
B_Cp_dist, B_Cp_dist

{A, B, C,D}, p, # p,, and pointp, orp, lies between AB or D D
CD, merges with the nearest points. Only two potats be A c
. S it
merged. (Atomic rules 24, 31, 35, 32, 36, 29, 33, 33, B Lice A
34). ' " ¢ 1
; |
D
TABLE Il C G
_ ATOMIC RULE LIST—MERGING PR_oc_Ess B B g(?, k A
Nr. Atomic rule Description S -
18 onePoint_CorD_n  One point C or D lie close to point A or B of AB L
earToPoint_AorB  abscissa. Max. distance is defined by fix. thred}
19 Q_E_gish Length of AB abscissa onePoint_CorD_nearToPoint_AorB AB_CD_intersectExistinsideABCD
ISt )
T " - “_,.—" '--._‘_ D
20A_Cp_dist D|stanc¢ of the' point A gnd mters_ect of AB and
perpendicular line passing the point C. ® X A
: Distance of the point A and intersect of the AB and A i B 4
21 A_Dp_dist f . : . : ] B
perpendicular line passing the point D. + ; C
: Distance of the point B and intersect of the AB and 3 C iD
22 B_Cp_dist : . h ) | ;
perpendicular line passing the point C. — o D C A
23B_Dp_dist Distance of the point B and intersect of the AB and T 5 /‘/0

perpendicular line passing the point D.

This rule tells us that abscissae AB and CD have
one intersect between AB and CD points. ‘True’ if
yes, ‘False’ if intersect does not esist.

Distance of the point A and intersect AB and CD
abscissae, if rule 24 is true.

Distance of the point B and intersect AB and CD
abscissae, if rule 24 is true.

Distance of the point C and intersect AB and CD
abscissae, if rule 24 is true.

Distance of the point D and intersect AB and CD
abscissae, if rule 24 is true.

Intersect Ap of the line passing the point A,
perpendicular to CD is or is not inside CD absci
Rule can be true or false.

Intersect Bp of the line passing the point B
perpendicular to CD is or is not inside CD absci
Rule can be true or false.

Intersect Cp of the line passing the point C
perpendicular to AB is or is not inside AB absci:
Rule can be true or false.

Intersect Dp of the line passing the point D
perpendicular to AB is or is not inside AB absci:
Rule can be true or false.

Distance of the point A from line which CD

24 AB_CD_intersect
ExistinsideABCD

ABCD_Axyp_inter
sect_overhangL
ABCD_Bxyp_inter
sect_overhangL
ABCD_Cxyp_inter
sect_overhangL

ABCD_Dxyp_inter
sect_overhangL

25

26

27

28

29 A_inside_CD

30B_inside_CD

31 C_inside_AB

32 D_inside_AB

33 A_CD_dist ] -
- = abscissa lies on.
34B_CD_dist D|sta_nce qf the point B from line which CD
abscissa lies on.
35C_AB_dist Distance (_)f the point C from line which AB
abscissa lies on.
36D_AB_dist Distance of the point D from line which AB

abscissa lies on.

The merging process uses the atomic rule list ored in
Table Il — rules 18-36. Graphical representatioh te
presented atomic rules is depicted in Fig. 5.
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A _B_dist (B_A dist) *L, L6, L8, L10 are electedorking

A B parameters - constants of thelLdAM
— process.

L

——p

Examples of the presented rules (from top to baotfoom left to right):
* (AB_CD_Axyp_intersect_overhangL > L8 &
AB_CD_Axyp_intersect_ overhangL < L10)

* A_Cp_dist < A_Dp_dist, B_Cp_dist < B_Dp_dist

« onePoint_CorD_nearToPoint_AorB < L6

* AB_CD_intersectExistinsideABCD = true,
AB_CD_intersectExistinsideABCD = false

* A _B_dist (B_A dist) =L

Fig. 5. Atomic rule list, conceptional relation \ween two abscissae AB and
CD; graphic representation.

IV. EXPERIMENTAL RESULTS

A. DE efficiency and relevancy — short discussion

DE is a stochastic optimizer. The optimized task is
continual, separable, t-variant, unimodal (for dnsalarching
area only). Several different evolutionary optimizgEA)
were tested in a continual localization task — B&p 6. All
tested algorithms: SGA[48], [49], [55], aGA[54]SP[53]
and DE applied to (3) and (4) equations (affasF; strategy)
provide well usable results. Beside these optimsizelassic
Cox’s [5] gradient method was tested as well. Akthods
were tested under heavy-duty operation conditiohsaa
continual localization task in known environmentndgkvn
geometric map) to get their reliability and capiiei.
Unfortunately, the map building algorithm is noghly noise
resistant that much. Additive Gaussian noise wiltfent
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noise bandwidth (independent, fixed noise bandwiditbhm
zero to 800cm was tested. The sample of noiseol&sned
according to the equatiol,, sy ¢y = D¢y + rnd(—L, +L),
where 2L is equal to noise bandwidth amed represents a
random numbers generator — normal distribution, mmeszo.
DE and PSO algorithms proved the best results withegard
to different types of environments — see [54]. tmtcast to

most suitable. DE/Rand1/Exp provides the best tesBeside
the DE, PSO optimizer provides good results tod, Db is
better of approx. 5% if the additive (Gaussian)seas small
or zero. In structured environment PSO is signifigabetter
from noise level approx. 250cm. Presented gSLAM@tigm

is designed to build a map of unknown environmeithout
moving objects and under noise stress no more #@n-

other used EA, DE and PSO provide stable and almogbcm. Noise level value was obtained based on practical

identical results, especially on lower noise levéscasional
malfunction (which SGA suffers from so much) wasrere
observed. Permanent malfunction of any EA methatsed
by additive noise was observed only on highestentgsels
from the level of about 550cm.

256

@
5

Key: —+— GA — —aGA —#—COX ——DE - PSO

Vertical axis inlog, scale. Bottom right - Localizatiom environment A
noise bandwidth +/-225cm.

Fig. 6. Graphs of accuracy of estimating the positand heading - SGA,
aGA, PSO, DE and Cox’s optimizers.

For comparison classic, Cox gradient method is ablg to
work at noise level no higher than about 50. Onlg4dh line
8, block A1, DE algorithm is used. Input of thistiopzer is
the area of width x height approx. 60 x 60cm (oggdei)
around the last known robot's posEM (temporary map)
obtained fromGM based on classic ray-tracing algorithm

line fitting method — block A1;M is used for computation

acceleration purposes only) and actalector.

DE optimizer used in presented gSLAM method solzes

classic two-dimensional optimization problem. Hegdof the
robot is calculated separately because of the acguand
higher speed. Step in heading is 0.5°. If a thresedsional
optimizer would be used similar to [16], the numbafr
generations and number of individuals in every pain
must be minimally three times higher.

In Fig. 7, population convergence is depicted.\iatlials in
the first generation cover equally the whole seagcharea
(100x100cm is elected in here). After 10 generatioall
individuals are almost at the correct pose. Nomyndlb
generations/10 individuals are efficient to enstime correct
convergence. After 20 generations, DE optimizerntbuhe
correct pose. In Fig. 7, robot is depicted by alstmangle;

heading is depicted by a short line. 10 classicicba:

perturbation vectors were tested to get which vedtothe
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experiments. Ability to work under higher noise d&y is
significantly reduced thanks to A1 and A5 algorithmline
fitting and merging methods.

1. generation 5. generation 10. generation 20. generation

Key: 20 generations 20 individuals,
DE/Rand1/Exp, F=0.6,Pcr=1.0.

searching area 100x10C

Fig. 7. Population convergence - Differential evign.

B. Experimental verification of the gSLAM algorithm

The experimental verification of the proposed gSLAM
algorithm was performed in two structured environtee- A
and B. The first environment was build-up for gestposes by
cardboard boxes in laboratory. It is a common imdoffice
environment of 10 x 10 meters with several obsgaatside.
The obstacles are cardboard boxes (approx. 40m)60c
Trajectory length was approx. 3001.11cm. The ratidéined
350 D, vectors. The environment consists of 60 walls.
Differential evolution - working parameters: DE/ddtvexp,
POP = 25, GEN = 25, searching ared2 x 32cm, F = 0.6,

Pcr = 0.9. Such working parameters were obtained from
practical experiments. If value is smaller, time to correct
pose evaluation is significantly longer. There islirear
dependence. Thanks to quantizing noise of used 28tk
PLS100 theoretical accuracy4ss cm. Practically, it is twice
as worse. The second environment B is a large erlust
+of'fices. Dimensions are 2560 x 1880cm. Trajectength is
23629.60cm. The number of lines is 329; the nundfeD,
vectors is 1832. Robot passed the trajectory whiahy times
intersected itself. Environment B consists of 1(Gabroffices
and one long hallway. The working parameters of DE
estimator were identical to the first experiment.

In the first experiment (see Fig. 8) robot passkd t
trajectory which intersects itself in three poinfresented
estimatorF;(or F,) does not use ‘closing loop’ mechanism
(global localization based pose corrector) capalofe
improving the correct pose estimation globally. sTinakes
the estimator more sensitive to noise.

The robot was able to pass through the environmvéhbut
loss of orientation. Leonard-DurrantWhyte's aldomit [18,
19, 20] was tested for comparison of the efficienfyested
methodsF;(or F,). Fig. 8 shows that both methods were able
to build-up the map of unknown environment withaurty
Sproblems.
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F5 evolutionary strategy Leonard-DurrantWhyte* Department, University of Bonn. The sensorial datare
algorithm burdened by additive noise (Gaussian noise, meen) néth

bandwidth 6cm £3cm) — it matches the new type of 2DLS
Sick LMS-200. Because dimensions of the environmesre
set to approx. 30x20 meters only, beams were motrted by
Lnax function. All beams reflect the walls at any tinlteis a
big advantage. By this step 2DLS provides more ulsef
information. Fig. 9 shows the result of the expent

The robot was able to build the map of environmwtitout
any problems. Several places are not well mappkdri@d)
because of small inaccuracies at heading estimatostly it
is small structured space. Thanks to existence dbrg
corridor in map B,F; strategy was only used. Thanks to EA
method use, the robot has to keep a minimal distapprox.
50cm from all obstacles — searching area may netoowne
the walls of the environment. Sometimes this distawas
slightly exceeded. Large and well structured eminent is a
more suitable area for gSLAM algorithm, especi#lihere is
one central point and all offices are attainablentr this.
Election of suitable trajectory has a big influeno®. The
presented gSLAM algorithm only uses one data soudrce
sensorial data from 2DLS. Behavior of such a metload

Every method has its own specific characteristiemnard- little different from behavior of a classic probkgtic method.
DurrantWhyte's algorithm provides slightly turnedam of When the robot is moving in a long corridor, thajectory
about 3°. The correct shape of the tested enviratsneas similar to ship cruising is the best choice. Tugshould be
bild by hands for comparison purposes only. In sgvalaces made along large circular trajectory, if it is pibss. On the
there are minor but visible inaccuracies in congmrito the other side, gSLAM shows that sensorial data astig data
map buit-up byF; strategy. In both cases the final line map o$ource can be practically usable for such purpoBegh

Final map

Cloud of points

*Correct shape of the tested environment is platieavell.F; andF,
strategies provide almost identical results — idahtmap.
Differences are unimportant.

Fig. 8. Environment A — SLAM.

the built environment can be used for localizapoocess. strategiesF; and¥, provide identical results. No malfunction
was observed at testing time. Differential evolutrovides a
Line map stable and very powerful tool.
)N J vy : I _J V. CONCLUSION
,JO [L l—_l — The simultaneous localization and the mapping #lgor
‘I . .
15 —., , were developed and presented in this paper. The abthe

presented algorithm is based on geometric prinstiaad
2 evolutionary computations. Such approach provides a
\jj L\I - ‘ efficient and stable tool. The differential evotuti forms a

‘—|
L _ tool. - arti fo
0 i 7T ; substantial part of this project. Based on pratgzaeriments
L I I~ [ _‘—'J

DE was elected as one of the most suitable algostfor map
building purposes especially on zero or lower ndeseels.
Points map (cloud of points) + Estimated Roboet#gry + real posnions of Results presented in here were obtained from two
all walls. experiments—in a small indoor office environmentd aa
cluster of small offices and provide us with a widéew on
possibilities of the evolutionary robotics and mipilding
process in general.

The proposed algorithm and basic methodology wested
in different types of environments with stable tesu
Navigation algorithms enabling both, global or logese
estimation and map building (SLAM process) stilldmg to
highly interesting areas of mobile robotics. Contta
‘ ' increasing computer power provides immense poggisilto
create more complicated and more sophisticatedritigos
for regular available computers. Thanks to the ibdgies of
Fig. 9. Environment B - Computer Science Departidntversity of Bonn joining the groups of different strategies, grezgults can be

reached regarding to the type of working conditiomfe
The second experiment was conducted in a Iarge:eofflpresemed map building method only uses one datzesand

environment. The trajectory was obtained by computghanks to the natural addition of additive errotsttee pose
simulation from the geometrical map of ComputereSce

=
/]

Pm

A
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estimation process, the size of mapped areas wilhltvays [17] J.C. Latombe, and A. Lazanas, “Landmark-Based Robot

limited to some extent. Navigation,” Algoritmica vol. 13, no. 5, pp. 472-501, 1997.
[18] J.J. Leonard, and H.F. Durrant-Whyte, “Simultanesnap
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