
 

   

Abstract—In this paper we test some supervised algorithms 
that most of the existing related works of word sense 
disambiguation have cited. Due to the lack of linguistic data for 
the Arabic language, we work on non-annotated corpus and with 
the help of four annotators; we were able to annotate the 
different samples containing the ambiguous words. Since that, we 
test the Naïve Bayes algorithm, the decision lists and the 
exemplar based algorithm. During the experimental study, we 
test the influence of the window size on the disambiguation 
quality, the derivation and the technique of smoothing for the 
(2n+1)-grams. For these tests the exemplar based algorithm 
achieves the best rate of precision. 

Index Terms—Supervised algorithms, training data, Naïve 
Bayes, decision list, exemplar based algorithm, window size.  

I. INTRODUCTION 

UMAN  language is ambiguous; many words can have 
more than one sense that is dependent on the context of 

use. The word sense disambiguation (WSD) allows us to find 
the most appropriate sense of the ambiguous word.  

The benefits of WSD were exploited by many NLP 
applications such as machine translation, information retrieval, 
grammatical analysis, speech processing as well as text 
processing. 

The task of identifying the correct sense for the ambiguous 
word is not simple as it appears. What should be done to 
disambiguate a word? We must find a way to define the 
possible meanings of the word, since that we have to assign 
each occurrence of the ambiguous word to the appropriate 
sense. 

In this work, we use the Naïve Bayes method, the decision 
lists and the exemplar based algorithm. These methods are 
based on a training phase during this part of work, we use an 
annotated training corpus (we extract from a non-annotated 
corpus the different samples containing the ambiguous word 
and we tag them with their senses).  

Since that, a testing phase will classify a word into senses 
[1, 2]. In the most WSD works that was evaluated in the 
conference Semeval 2007, the supervised methods achieve the 
best disambiguation quality (about 80% precision and recall 
for coarse-grained WSD). 

The paper is structured as follows. We describe in S ection II 
how we tag the samples. After that, in Section III, we give a 

 
 

detailed account of the used supervised methods applied for 
the Arabic language. In Section IV, we present  the results and 
discuss the difference with some related works in Section V. 
Finally, Section VI concludes the paper. 

II. RELATED WORKS 

A. Review Stage 

We can cite the work of Mona Diab that uses a supervised 
learning approach called "bootstrap" [15]. This approach is 
highly accurate in the average of 90% of the evaluated data 
items based on Arabic native judgment ratings and 
annotations. Also, we find the work of Elmougy [16], where 
the Naïve Bayes algorithm was applied for the Arabic 
language. Some pre-treatement steps were applied like word 
rooting and eliminating stopwords, since that they use the net 
and a dictionary to collect ten training samples to each word 
for the testing phase. This work achieves a rate of precision of 
73%. Compared to our work the amount of data is more less, 
and collecting the testing samples from the net is a hard task 
and not sufficient. 

Finally, Soha M. Eid [17] compared the Rocchio Classifier 
to Naïve Bayesian classifier, the most frequent sense and the 
support vector machine using arabic lexical samples. The 
Rocchio classifier achieves an overall accuracy of 88% as the 
best rate and reduces the error by over 14%. But they test only 
five ambiguous words and they haven’t explained how tagging 
the samples of the training phase. 

Compared to our work we obtain a less rate of precision 
because of the important number of ambiguous tested words 
(fifteen ambiguous words). Also as a comparative study there 
is no test for the influence of the window size, the stemming 
and the smoothing on the quality of disambiguation. 

For the other English related works, we can cite the 
experimental study that com-pares some supervised 
algorithms to disambiguate six senses of the word line [18] 
and [19]. Also the work of Pedersen where he compared the 
Naïve Bayes with Decision tree, Rule based learner, etc., to 
disambiguate the word line and 12 other words [20]. All these 
works, found that the Naïve Bayes algorithm performed as 
well as the other supervised algorithms, which is the same 
results founded in this work. Compared to the number of 
tested words by the English related works, we have to point 
that we test fifteen words for a derivational language that 
suffers from the lack of resources. 

We can also compare the obtained results by some works of 
unsupervised Arabic word disambiguation, where the same 
samples and the same words were tested. In the first work 
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[21], it was proposed to use some information retrieval 
measures with the Lesk algorithm and it achieves a rate of 
73%. In the second one [22], a Context matching algorithm 
returns a semantic coherence score corresponding to the 
context of use that is semantically closest to the original 
sentence. This algorithm achieves a precision of 78%. In this 
work, we obtain a less rate of precision. We can presume that 
the supervised works are more satisfactory for the task of 
Arabic Word Sense Disambiguation. 

III.  METHODOLOGY 

This study experiments some supervised methods for the 
Arabic Word Sense Disambiguation. It compares the use of 
the Naïve Bayes algorithm, the decision list and the k nearest 
neighbor. These methods were used previously in many 
related works (that will be discussed in the section 5). 

We have applied some pre-processing steps to the words 
belonging to the original sentence and the training sets.   

 

A. Pre-processing 

1) Extraction of stopwords 
Over the past ten years several methods have been proposed 

for the extraction of stopwords that have no influence on the 
meaning of a given word [5], [6] and [7]. These methods are 
used to evaluate the significance of a word in a document, 
which also varies depending on the frequency of the word in 
the corpus. Thus allowing us to eliminate the stopwords 
(words that have no influence on the meaning of the 
ambiguous word) such as (ن, ��, ��ق	آ ,�� ,	�
 ,�� ,�� ,���) (even, 
of, may, by, in, was, to him, over the). 

These words will be removed from the sentence containing 
the ambiguous word, to decrease the number of compared 
words. 

In this part of our work, we use the tf-idf metric [8] that use 
the term frequency (tf) and the inverse document frequency 
(idf) (see equation 1). 

Tf -idf i,j = tf i, j × idf i                                                                  (1) 

The frequency of a word (Term Frequency) is the number 
of occurrences of a word in a given document. Let the 
document dj and the word ti, the frequency of ti in dj is 
measured as follows (see equation 2). 

tf i, j  =  n i , j / ∑ �	� k, j                                                                (2) 

Where ni,j is the number of occurrences of the word wi in 
the document dj. The denominator is the number of 
occurrences of all words in the document dj. 

The inverse document frequency gives the importance of a 
word in the corpus. It’s measured as follows (see equation 3). 

idf i = log  
|	�|

|	�	�	∶��	
	�	�|
                                              (3) 

where | D | is the total number of documents in the corpus and 
|{dj : ti � dj}| is the number of documents where the word ti 
appears. We have to note, that the elimination of stopwords, 
will decrease the number of compared words in the testing 
phase. 

2) Stemming 
 Each Arabic word, nouns or verbs, is based on three letters, 

or more rarely four or two letters. These three letters are the 
root of the Arabic word, they are the most important letters 
used to be compared with other letters used for the derivation 
of the word (added to the right or left of the root). 

In this work, we use the Khoja stemmer that removes the 
longest suffix and the longest prefix. It then combines the 
remaining words with verbal and nominal patterns, to extract 
the root [9]. 

The stemming were applied to the words contained in the 
original sentence, to find there occurrences in the extracted 
training samples. 

B. Tagging Samples 

The supervised methods need a training phase that used a 
tagged corpus.  The examples obtained by the training phase, 
must contain as many words surrounding the ambiguous 
words as it will be needed in the test phase. We chose to work 
on texts dealing with multiple domains (sport, politics, 
religion, science, etc.). These texts were recorded in the corpus 
of Latifa Al-Sulaiti [3].  

Using this corpus, we tag the founded ambiguous words 
(used in the testing phase) by their senses, this step was 
achieved with the help of four annotators (Arabic language 
teachers), that choose the ambiguous words by the important 
number of senses out of context. Using the dictionary Lissan 
al arab [4] which is one of the most famous Arabic dictionary, 
we were able to tag the words with their corresponding senses. 

We haven’t found an important difference between the 
sense tags, the arrangement between the annotators is in the 
average of 95%. In table 1, we give the statistics of the 
extracted samples. 

TABLE I 
 DISTRIBUTION OF THE SENSES IN THE EXTRACTED SAMPLES. 

 
Avg. # of words 

per sentence 
Avg. # of senses 

per word 
Avg. # of senses 
per ambiguous 

words 

Avg. dominant 
sense for the 

ambiguous word 

9,42 1,56 6,32 74% 

 
Fifty words have been chosen. For each one of these 

ambiguous words, we evaluate 20 examples per sense. This 
number of words is judged as sufficient compared to the 
Senseval evaluation that put into practice 15 nouns, 13 verbs, 
8 adjectives and 5 words that the grammatical tags wasn’t 
taken into consideration. Totally there are 206 tests for every 
word. 

C. Supervised methods 

During the training phase, we tag the words surrounding the 
ambiguous word with Ci,j (which is the local collocation that 
will indicate the position of two words given the ambiguous 
word). Let the ambiguous sentence is: “ ار �� ا��ا�� إ�� ا������ا�
����� ه"!� ا��	� �� ا� ���
 Escape from reality“ ”وا�*�( ه� )'�& ا��%	ء 
to science and books is the way of the meeting between these 
two different worlds”. 
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Let “)�*ا�” “books” is the ambiguous word, in this sentence 
we can find 156 collocations. For example the collocation C-2,-

 _science“ ”ا����_ ا��%	ء“ :fact _science”, and C-2, 3“ ”ا��ا��_ا����“ :4
meeting”.  

For the original sentence, we define m features that 
correspond to the m collocations surrounding the ambiguous 
words. The supervised methods cited in what follows, will use 
these features for each sense of the ambiguous word. 

1) The Naïve Bayes rithmalg 

This method is one of the most popular and performant 
probabilistic method [10], it was used in different works of 
natural language processing including the word sense 
disambiguation. In fact the comparative works of Perdersen 
[11] found that the Naïve Bayes gives sufficient results 
compared to the other methods. 

After tagging the samples containing the ambiguous word 
(AW) (section 3), we have to measure the probability of the 
collocations (Fj) contained in the same context of use of the 
ambiguous word for the sense (S) (see equation 4). 

P =   ∑
Number	of	occurrences	of	Fj	with	the	sense	Si

number	of	occurrences	of	Fj
						"

	#$ (4) 

Where; N is the number of collocations in the original 
sentence.  

This step is followed by the measure of the probability for 
each sense in the corpus (see equation5). 

P(Si) =   ∑ Number	of	occurrences	of		AW	with	the	sense	Si	
Total	number	of	occurrences	of	the	ambiguous	word

�
�#$ 		(5) 

For the different collocations contained in the original 
sentence, we add the logarithm of the probability. The score is 
the sum of the obtained results (see equation 6). 

Score (Si) = argmax-.		∈	012010345	678	93:�5∏ P	3F=|S>5"
	#$ 		(6) 

The sense with the highest score is the correct sense. 

2) The decision List 

The decision list algorithm was adopted for the WSD, in the 
work of Yarowsky [12]. In this part of our work, we need to 
compute the conditional probability of each sense for every 
collocation contained in the local context, p (Si | F1,F2,…, 
Fm) (see equation 7), for that we use : 

− The probability of each observed collocation given the 
sense of the ambiguous word  p (F1,F2,…, Fm |Si) (see 
equation 1), 

− The probability of each sense in the corpus p(Si) (see 
equation 5) , 

− The unconditional probability of features (collocations 
surrounding the ambiguous word) (see equation 7). 

P  = p (F1,F2,…, Fm |Si) × p(Si)  / p (F1,F2,…, Fm)          (7) 

Since that to construct the decision list, we have to sort the 
different obtained results (given by the equation 7 for the 
different senses of the ambiguous word) using the log of the 

conditional probability of two compared senses for the tested 
word (see equation 8). 

Finally the surrounding collocations that obtain the highest 
score, will be attributed to that sense, and will be ranked in the 
top of the decision list. After this step of classification, we will 
obtain an ordered list of Si given the obtained score. 

Score (wi) = Abs (log (P(S1|wi) / P(S2|wi)))              (8) 

Given the score obtained in the decision list, we can judge 
the significance of the words contained in the original 
sentence. 

3) The exemplar based (K Nearest Neighbor) algorithm 

The k nearest neighbor algorithm (KNN) is one of the 
highest performing methods in WSD [2]; [8]. The KNN 
algorithm is based on the k nearest similar instances to the 
tested instance. The classification phase is achieved by 
measuring the distance between the new example x = (F1, 
F2,…, Fm), and the previously stored examples xi = (Fi1 , . . . , 
Fim), to do that in this work we use the hamming distance (see 
equation 9). 

∆3@, @�5 B 	∑ C	 	DEF	 , F�	G		"
	#$                                       (9) 

Where (dj = Number of occurrences of the jth collocation in 
the previously stored examples / Total number of collocations) 
and DEF	, F�	G is 0 if Fj = Fij and 1 otherwise. Since that, we 
can establish the set of the k most nearest examples. The most 
frequent sense between those k obtained samples is considered 
as the correct sense.  

IV.  EXPERIMENTAL RESULTS 

A. Encountered problems  

Many problems have been encountered during the process 
of disambiguation cited in what follows:  

− For the Naïve Bayes algorithm, we have the problem of the 
zero counts. As a solution, we replace the zero with 
P(Sk)/N, where N is the total size of the training sets. This 
solution is called smoothing. 

− The important number of glosses given by a dictionary for 
the ambiguous word and the difference between the 
founded senses in the corpus. In the table 2, we give the 
number of senses for some words and their corresponding 
founded senses in the training corpus. As a solution, we try 
to collect from the net some texts containing the missing 
senses and add them to our corpus. 

− Finding the samples for the tests (that can be judged 
effective and adequate for the process of disambiguation) is 
a hard task and differs between works for the obtained 
results. 

− For some considered words, we have found senses that 
appear in the corpus and don’t exist in the dictionary. These 
senses were added to the list of candidate senses. For the 
word “ayn” we extract about ten sentences from the 
training corpus where it means a name of a city in United 
Arab Emirates. A sample is given in what follows: 
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“�',�

'�	ء !���2 1 	�	 0 	 أ��/	. �� أ �� ”�41%'�/	 ��!/3 ا��
� “The ayn city receives us brightly completely different 
than abu-dhabi”. 

− The difference between the number of occurrences in the 
corpus for each sense. For example for the word “)آ�” 
“kataba”, we have found about 452 samples where the 
considered  sense is “write” which is the most  frequent  
sense and about 23 samples where the considered sense is 
“predestined”.  

 
TABLE II 

 DIFFERENCE OF SENSES BETWEEN THE DICTIONARY AND THE EXTRACTED 

SAMPLES. 
 

Ambiguous 
words 

transcription Number of 
senses in the 
dictionary 

Number of senses 
in the extracted 

samples 
)4� hassaba 15 6 

 kataba 8 5 آ�(

��0 ayn 20 8 

��5 chaar 8 4 

&%0 aakl 18 6 

1) Obtained results 
To test the effectiveness and the impact of the different 

methods (presented in the previous section 4) on Arabic word 
sense disambiguation, we performed some experiments. In the 
work of Yarowsky [14], a study of the influence of the 
window size on WSD, shows that the most useful keywords 
for the WSD are included in a micro-context from six to eight 
words.  

However, we have to point out that in a so large context; it 
is difficult to discern the key elements for determining the 
meaning of a word. It seems obvious that a fixed size of the 
context window is not adapted for all the words.  

In order to solve this problem, we suggest determining the 
optimal size of the appropriate context for each test. Tests 
were conducted by measuring the performance (Precision) of 
each method varying the window size (the tested sentence 
containing the ambiguous word).  

In Table 3, we give the rate of precision (Correct answers 
obtained / Obtained results) obtained using the bigram (n = 2), 
where we test only one word after or before the ambiguous 
word. In the case of trigram (n = 3) two words will be 
considered (one after the ambiguous word and another one 
before). Finally in the (2n + 1)-grams, we take into 
consideration n words surrounding the target word, in this 
experiments n = 3, because it give us the better results. 

During the experimentation phase, we change the number 
of samples taken into consideration from the training phase. 
For example the 25% of samples means that we have taken 
into account 25% from the total number of samples that we 
have obtained in the training phase. The Figure 1 shows how 
the rate of precision varies across the percentage of samples. 
We conclude that the lowest rate of  disambiguation is mainly 
due to the insufficient number  of samples, which result in the 

failure to meet all  possible events. For that we try to collect as 
many texts as we can, to extend the number of samples.  

 
TABLE III 

 RESULTS OBTAINED BY DIFFERENT METHODS VARYING THE WINDOW SIZE. 
 

 Methods 
 
tests 

Naïve Bayes Decision List KNN 

P MFS P MFS P MF
S 

Bigram 23.04 29.17 21.43 25.29 26.3
3 

30.2
1 

Trigram 34.19 40.29 31.11 39.40 43.9
7 

47.0
2 

(2n+1)-
grams 

47.89 54.70 43.21 53.68 51.3
2 

53.4
6 

 
The rate of precision is increased for the most frequent 

sense, it is explained by the fact that the number of samples 
containing the most frequent sense is more important that the 
number of samples containing the other senses. 

 

 
Fig. 1. Obtained results by the different algorithm depending on the amount of 
data considered in the training phase.  
 

Since that during the step where we have to count the 
number of occurrences of each collocation contained in the 
original sentence, we take into consideration all the derivation 
of the words using the khoja stemmer. For example for the 
word “أ��” “karaa” that occurs with the word “)آ�” “kataba”, 
we have to count the number of occurrences of “ؤون��أت, !%�   
�أت, ��أ1ّ�, %1�أ !%�أ�, …” in the extracted samples.  

We detail in Table 4, the rate of precision obtained with and 
without the stemming. The most supervised methods estimate 
the probability of each word using the context of the previous 
n-1 words. The problem of those methods is that unfortunately 
it assigns zero to n-grams that have not been observed, in the 
training phase. To avoid this problem we have to smooth the 
zero counts (see Section 4.1). 

In Table 4, we give also the results of the different methods 
without and with the use of the smoothing for the (2n+1) 
grams experiment. 

From the results cited in table 4, we find that the stemming 
increase the precision by a percentage that varies between 9% 
and 21% for the different methods. It was supposed that the 
smoothing will decrease the rate of precision, because it 
increases all probabilities for unseen words.  
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TABLE IV 
RATE OF PRECISION OBTAINED BY CONSIDERING THE STEMMING AND THE 

SMOOTHING STEPS. 
 

Tests 
 

Methods 

Without 
stemming 

and 
smoothing 

Without 
Stemming 
and with 

smoothing 

With 
stemming and 

without 
smoothing 

With 
smoothing 

and 
stemming 

Naïve 
Bayes 

31.25 31.75 47.89 48.23 

Decision 
List 

22.06 22.56 43.21 43.86 

KNN 42.19 42.69 51.32 52.02 

 
Also the smoothing increases the precision and recall of 

about 0.5%, and this increase is encouraging to perform the 
disambiguation quality.  

 As we have cited in the beginning of this section, the 
supervised methods needs a highly amount of data. The results 
varies from a word to another one and for the majority of the 
tested words the k nearest neighbor algorithm gives the better 
results and for some other words (“�0��،آ�(، �5” and their 
corresponding transcription is “ayn, kataba, chaar”) the Naïve 
Bayes algorithm is the best one. The rate of precision obtained 
by the decision list is in all the case is more less than the rate 
obtained by the Naïve Bayes algorithm. We may explain these 
results by the fact that the other supervised algorithm needs a 
so large training sets than the Naïve Bayes algorithm. 

V. COMPARISON WITH SOME RELATED WORKS 

We can cite the work of Mona Diab that uses a supervised 
learning approach called "bootstrap"[15]. This approach is 
highly accurate in the average of 90% of the evaluated data 
items based on Arabic native judgment ratings and 
annotations. Also, we find the work of Elmougy[16], where 
the Naïve Bayes algorithm was applied for the Arabic 
language. Some pretreatement steps were applied like word 
rooting and eliminating stopwords, since that they use the net 
and a dictionary to collect ten training samples to each word 
for the testing phase. This work achieves a rate of precision of 
73%. Compared to our work the amount of data is more less, 
and collecting the testing samples from the net is a hard task 
and not sufficient. 

Finally, Soha M. Eid [17] compared the Rocchio Classifier 
to Naïve Bayesian classifier, the most frequent sense and the 
support vector machine using arabic lexical samples. The 
Rocchio classifier achives an overall accuracy of 88% as the 
best rate and reduce the error by over 14%. But they test only 
five ambiguous words and they haven’t explain how tagging 
the samples of the training phase. 

Compared to our work we obtain a more less rate of 
precision because of the important number of ambiguous 
tested words (fifteen ambiguous words). Also as a 
comparative study there is no test for the influence of the 
window size, the stemming and the smoothing on the quality 
of disambiguation. 

For the other English related works, we can cite the 
experimental study that compares some supervised algorithms 
to disambiguate six senses of the word line [18] and [19]. Also 

the work of Pedersen where he compared the Naïve Bayes 
with Decision tree, Rule based learner, etc, to disambiguate 
the word line and 12 other words [20]. All these works, found 
that the Naïve Bayes algorithm performed as well as the other 
supervised algorithms, which is the same results founded in 
this work. Compared to the number of tested words by the 
English related works, we have to point that we test fifteen 
words for a derivational language that suffers from the lack of 
resources. 

We can also compare the obtained results by some works of 
unsupervised Arabic word disambiguation, where the same 
samples and the same words were tested. In the first 
work [21], it was proposed to use some information retrieval 
measures with the Lesk algorithm and it achieves a rate of 
73%. In the second one [22], a Context matching algorithm 
returns a semantic coherence score corresponding to the 
context of use that is semantically closest to the original 
sentence. This algorithm achieves a precision of 78%. In this 
work, we obtain a less rate of precision. We can presume that 
the supervised works are more satisfactory for the task of 
Arabic Word Sense Disambiguation. 

VI.  CONCLUSION 

This paper has presented an experimental study of some 
supervised algorithms that were applied to perform word sense 
disambiguation in Arabic. These algorithms are based on 
tagged samples and a very important amount of data in the 
used corpus. 

For a sample of fifty ambiguous Arabic words that are 
chosen by their number of senses out of contexts, the KNN 
achieves the best performance. We conclude that the 
supervised methods need an important amount of tagged data 
to achieve satisfactory results. We propose in future works to 
integrate some other resources and experiment some other 
supervised methods. 
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