

Abstract—In this paper we test some supervised algorithms
that most of the existing related works of word sense
disambiguation have cited. Due to the lack of linguistic data for
the Arabic language, we work on non-annotated corpus and with
the help of four annotators; we were able to annotate the
different samples containing the ambiguous words. Since that, we
test the Naïve Bayes algorithm, the decision lists and the
exemplar based algorithm. During the experimental study, we
test the influence of the window size on the disambiguation
quality, the derivation and the technique of smoothing for the
(2n+1)-grams. For these tests the exemplar based algorithm
achieves the best rate of precision.

Index Terms—Supervised algorithms, training data, Naïve
Bayes, decision list, exemplar based algorithm, window size.

I. INTRODUCTION

UMAN language is ambiguous; many words can have
more than one sense that is dependent on the context of

use. The word sense disambiguation (WSD) allows us to find
the most appropriate sense of the ambiguous word.

The benefits of WSD were exploited by many NLP
applications such as machine translation, information retrieval,
grammatical analysis, speech processing as well as text
processing.

The task of identifying the correct sense for the ambiguous
word is not simple as it appears. What should be done to
disambiguate a word? We must find a way to define the
possible meanings of the word, since that we have to assign
each occurrence of the ambiguous word to the appropriate
sense.

In this work, we use the Naïve Bayes method, the decision
lists and the exemplar based algorithm. These methods are
based on a training phase during this part of work, we use an
annotated training corpus (we extract from a non-annotated
corpus the different samples containing the ambiguous word
and we tag them with their senses).

Since that, a testing phase will classify a word into senses
[1, 2]. In the most WSD works that was evaluated in the
conference Semeval 2007, the supervised methods achieve the
best disambiguation quality (about 80% precision and recall
for coarse-grained WSD).

The paper is structured as follows. We describe in S ection II
how we tag the samples. After that, in Section III, we give a

detailed account of the used supervised methods applied for
the Arabic language. In Section IV, we present the results and
discuss the difference with some related works in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Review Stage

We can cite the work of Mona Diab that uses a supervised
learning approach called "bootstrap" [15]. This approach is
highly accurate in the average of 90% of the evaluated data
items based on Arabic native judgment ratings and
annotations. Also, we find the work of Elmougy [16], where
the Naïve Bayes algorithm was applied for the Arabic
language. Some pre-treatement steps were applied like word
rooting and eliminating stopwords, since that they use the net
and a dictionary to collect ten training samples to each word
for the testing phase. This work achieves a rate of precision of
73%. Compared to our work the amount of data is more less,
and collecting the testing samples from the net is a hard task
and not sufficient.

Finally, Soha M. Eid [17] compared the Rocchio Classifier
to Naïve Bayesian classifier, the most frequent sense and the
support vector machine using arabic lexical samples. The
Rocchio classifier achieves an overall accuracy of 88% as the
best rate and reduces the error by over 14%. But they test only
five ambiguous words and they haven’t explained how tagging
the samples of the training phase.

Compared to our work we obtain a less rate of precision
because of the important number of ambiguous tested words
(fifteen ambiguous words). Also as a comparative study there
is no test for the influence of the window size, the stemming
and the smoothing on the quality of disambiguation.

For the other English related works, we can cite the
experimental study that com-pares some supervised
algorithms to disambiguate six senses of the word line [18]
and [19]. Also the work of Pedersen where he compared the
Naïve Bayes with Decision tree, Rule based learner, etc., to
disambiguate the word line and 12 other words [20]. All these
works, found that the Naïve Bayes algorithm performed as
well as the other supervised algorithms, which is the same
results founded in this work. Compared to the number of
tested words by the English related works, we have to point
that we test fifteen words for a derivational language that
suffers from the lack of resources.

We can also compare the obtained results by some works of
unsupervised Arabic word disambiguation, where the same
samples and the same words were tested. In the first work

Lexical Disambiguation of Arabic Language:
An Experimental Study
Laroussi Merhben, Anis Zouaghi, and Mounir Zrigui

H

Manuscript received June 18, 2012. Manuscript accepted for publication

July 24, 2012.
Laroussi Merhben Anis Zouaghi, and Mounir Zrigui are with the Unité de

Recherche en Technologies de l'Information et de la Communication of the
Réseau National Universitaire Tunisien, Tunisia (e-mail: aroussi_merhben@
hotmail.com; Anis.Zouaghi@gmail.com; mounir.zrigui@fsm.rnu.tn).

49 Polibits (46) 2012ISSN 1870-9044; pp. 49–54

[21], it was proposed to use some information retrieval
measures with the Lesk algorithm and it achieves a rate of
73%. In the second one [22], a Context matching algorithm
returns a semantic coherence score corresponding to the
context of use that is semantically closest to the original
sentence. This algorithm achieves a precision of 78%. In this
work, we obtain a less rate of precision. We can presume that
the supervised works are more satisfactory for the task of
Arabic Word Sense Disambiguation.

III. METHODOLOGY

This study experiments some supervised methods for the
Arabic Word Sense Disambiguation. It compares the use of
the Naïve Bayes algorithm, the decision list and the k nearest
neighbor. These methods were used previously in many
related works (that will be discussed in the section 5).

We have applied some pre-processing steps to the words
belonging to the original sentence and the training sets.

A. Pre-processing

1) Extraction of stopwords
Over the past ten years several methods have been proposed

for the extraction of stopwords that have no influence on the
meaning of a given word [5], [6] and [7]. These methods are
used to evaluate the significance of a word in a document,
which also varies depending on the frequency of the word in
the corpus. Thus allowing us to eliminate the stopwords
(words that have no influence on the meaning of the
ambiguous word) such as (ن, ��, ��ق	آ ,�� ,	�
 ,�� ,�� ,���) (even,
of, may, by, in, was, to him, over the).

These words will be removed from the sentence containing
the ambiguous word, to decrease the number of compared
words.

In this part of our work, we use the tf-idf metric [8] that use
the term frequency (tf) and the inverse document frequency
(idf) (see equation 1).

Tf -idf i,j = tf i, j × idf i (1)

The frequency of a word (Term Frequency) is the number
of occurrences of a word in a given document. Let the
document dj and the word ti, the frequency of ti in dj is
measured as follows (see equation 2).

tf i, j = n i , j / ∑ �	� k, j (2)

Where ni,j is the number of occurrences of the word wi in
the document dj. The denominator is the number of
occurrences of all words in the document dj.

The inverse document frequency gives the importance of a
word in the corpus. It’s measured as follows (see equation 3).

idf i = log
|	�|

|	�	�	∶��	
	�	�|
 (3)

where | D | is the total number of documents in the corpus and
|{dj : ti � dj}| is the number of documents where the word ti
appears. We have to note, that the elimination of stopwords,
will decrease the number of compared words in the testing
phase.

2) Stemming
 Each Arabic word, nouns or verbs, is based on three letters,

or more rarely four or two letters. These three letters are the
root of the Arabic word, they are the most important letters
used to be compared with other letters used for the derivation
of the word (added to the right or left of the root).

In this work, we use the Khoja stemmer that removes the
longest suffix and the longest prefix. It then combines the
remaining words with verbal and nominal patterns, to extract
the root [9].

The stemming were applied to the words contained in the
original sentence, to find there occurrences in the extracted
training samples.

B. Tagging Samples

The supervised methods need a training phase that used a
tagged corpus. The examples obtained by the training phase,
must contain as many words surrounding the ambiguous
words as it will be needed in the test phase. We chose to work
on texts dealing with multiple domains (sport, politics,
religion, science, etc.). These texts were recorded in the corpus
of Latifa Al-Sulaiti [3].

Using this corpus, we tag the founded ambiguous words
(used in the testing phase) by their senses, this step was
achieved with the help of four annotators (Arabic language
teachers), that choose the ambiguous words by the important
number of senses out of context. Using the dictionary Lissan
al arab [4] which is one of the most famous Arabic dictionary,
we were able to tag the words with their corresponding senses.

We haven’t found an important difference between the
sense tags, the arrangement between the annotators is in the
average of 95%. In table 1, we give the statistics of the
extracted samples.

TABLE I
 DISTRIBUTION OF THE SENSES IN THE EXTRACTED SAMPLES.

Avg. # of words

per sentence
Avg. # of senses

per word
Avg. # of senses
per ambiguous

words

Avg. dominant
sense for the

ambiguous word

9,42 1,56 6,32 74%

Fifty words have been chosen. For each one of these

ambiguous words, we evaluate 20 examples per sense. This
number of words is judged as sufficient compared to the
Senseval evaluation that put into practice 15 nouns, 13 verbs,
8 adjectives and 5 words that the grammatical tags wasn’t
taken into consideration. Totally there are 206 tests for every
word.

C. Supervised methods

During the training phase, we tag the words surrounding the
ambiguous word with Ci,j (which is the local collocation that
will indicate the position of two words given the ambiguous
word). Let the ambiguous sentence is: “ ار �� ا��ا�� إ�� ا������ا�
����� ه"!� ا��	� �� ا� ���
 Escape from reality“ ”وا�*�(ه�)'�& ا��%	ء
to science and books is the way of the meeting between these
two different worlds”.

50Polibits (46) 2012 ISSN 1870-9044

Laroussi Merhben, Anis Zouaghi, and Mounir Zrigui

Let “)�*ا�” “books” is the ambiguous word, in this sentence
we can find 156 collocations. For example the collocation C-2,-

 science“ ”ا���� ا��%	ء“ :fact _science”, and C-2, 3“ ”ا��ا��_ا����“ :4
meeting”.

For the original sentence, we define m features that
correspond to the m collocations surrounding the ambiguous
words. The supervised methods cited in what follows, will use
these features for each sense of the ambiguous word.

1) The Naïve Bayes rithmalg

This method is one of the most popular and performant
probabilistic method [10], it was used in different works of
natural language processing including the word sense
disambiguation. In fact the comparative works of Perdersen
[11] found that the Naïve Bayes gives sufficient results
compared to the other methods.

After tagging the samples containing the ambiguous word
(AW) (section 3), we have to measure the probability of the
collocations (Fj) contained in the same context of use of the
ambiguous word for the sense (S) (see equation 4).

P = ∑
Number	of	occurrences	of	Fj	with	the	sense	Si

number	of	occurrences	of	Fj
						"

	#$ (4)

Where; N is the number of collocations in the original
sentence.

This step is followed by the measure of the probability for
each sense in the corpus (see equation5).

P(Si) = ∑ Number	of	occurrences	of		AW	with	the	sense	Si	
Total	number	of	occurrences	of	the	ambiguous	word

�
�#$ 		(5)

For the different collocations contained in the original
sentence, we add the logarithm of the probability. The score is
the sum of the obtained results (see equation 6).

Score (Si) = argmax-.		∈	012010345	678	93:�5∏ P	3F=|S>5"
	#$ 		(6)

The sense with the highest score is the correct sense.

2) The decision List

The decision list algorithm was adopted for the WSD, in the
work of Yarowsky [12]. In this part of our work, we need to
compute the conditional probability of each sense for every
collocation contained in the local context, p (Si | F1,F2,…,
Fm) (see equation 7), for that we use :

− The probability of each observed collocation given the
sense of the ambiguous word p (F1,F2,…, Fm |Si) (see
equation 1),

− The probability of each sense in the corpus p(Si) (see
equation 5) ,

− The unconditional probability of features (collocations
surrounding the ambiguous word) (see equation 7).

P = p (F1,F2,…, Fm |Si) × p(Si) / p (F1,F2,…, Fm) (7)

Since that to construct the decision list, we have to sort the
different obtained results (given by the equation 7 for the
different senses of the ambiguous word) using the log of the

conditional probability of two compared senses for the tested
word (see equation 8).

Finally the surrounding collocations that obtain the highest
score, will be attributed to that sense, and will be ranked in the
top of the decision list. After this step of classification, we will
obtain an ordered list of Si given the obtained score.

Score (wi) = Abs (log (P(S1|wi) / P(S2|wi))) (8)

Given the score obtained in the decision list, we can judge
the significance of the words contained in the original
sentence.

3) The exemplar based (K Nearest Neighbor) algorithm

The k nearest neighbor algorithm (KNN) is one of the
highest performing methods in WSD [2]; [8]. The KNN
algorithm is based on the k nearest similar instances to the
tested instance. The classification phase is achieved by
measuring the distance between the new example x = (F1,
F2,…, Fm), and the previously stored examples xi = (Fi1 , . . . ,
Fim), to do that in this work we use the hamming distance (see
equation 9).

∆3@, @�5 B 	∑ C	 	DEF	 , F�	G		"
	#$ (9)

Where (dj = Number of occurrences of the jth collocation in
the previously stored examples / Total number of collocations)
and DEF	, F�	G is 0 if Fj = Fij and 1 otherwise. Since that, we
can establish the set of the k most nearest examples. The most
frequent sense between those k obtained samples is considered
as the correct sense.

IV. EXPERIMENTAL RESULTS

A. Encountered problems

Many problems have been encountered during the process
of disambiguation cited in what follows:

− For the Naïve Bayes algorithm, we have the problem of the
zero counts. As a solution, we replace the zero with
P(Sk)/N, where N is the total size of the training sets. This
solution is called smoothing.

− The important number of glosses given by a dictionary for
the ambiguous word and the difference between the
founded senses in the corpus. In the table 2, we give the
number of senses for some words and their corresponding
founded senses in the training corpus. As a solution, we try
to collect from the net some texts containing the missing
senses and add them to our corpus.

− Finding the samples for the tests (that can be judged
effective and adequate for the process of disambiguation) is
a hard task and differs between works for the obtained
results.

− For some considered words, we have found senses that
appear in the corpus and don’t exist in the dictionary. These
senses were added to the list of candidate senses. For the
word “ayn” we extract about ten sentences from the
training corpus where it means a name of a city in United
Arab Emirates. A sample is given in what follows:

51 Polibits (46) 2012ISSN 1870-9044

Lexical Disambiguation of Arabic Language: An Experimental Study

“�',�

'�	ء !���2 1 	�	 0 	 أ��/	. �� أ �� ”�41%'�/	 ��!/3 ا��
� “The ayn city receives us brightly completely different
than abu-dhabi”.

− The difference between the number of occurrences in the
corpus for each sense. For example for the word “)آ�”
“kataba”, we have found about 452 samples where the
considered sense is “write” which is the most frequent
sense and about 23 samples where the considered sense is
“predestined”.

TABLE II

 DIFFERENCE OF SENSES BETWEEN THE DICTIONARY AND THE EXTRACTED

SAMPLES.

Ambiguous
words

transcription Number of
senses in the
dictionary

Number of senses
in the extracted

samples
)4� hassaba 15 6

 kataba 8 5 آ�(

��0 ayn 20 8

��5 chaar 8 4

&%0 aakl 18 6

1) Obtained results
To test the effectiveness and the impact of the different

methods (presented in the previous section 4) on Arabic word
sense disambiguation, we performed some experiments. In the
work of Yarowsky [14], a study of the influence of the
window size on WSD, shows that the most useful keywords
for the WSD are included in a micro-context from six to eight
words.

However, we have to point out that in a so large context; it
is difficult to discern the key elements for determining the
meaning of a word. It seems obvious that a fixed size of the
context window is not adapted for all the words.

In order to solve this problem, we suggest determining the
optimal size of the appropriate context for each test. Tests
were conducted by measuring the performance (Precision) of
each method varying the window size (the tested sentence
containing the ambiguous word).

In Table 3, we give the rate of precision (Correct answers
obtained / Obtained results) obtained using the bigram (n = 2),
where we test only one word after or before the ambiguous
word. In the case of trigram (n = 3) two words will be
considered (one after the ambiguous word and another one
before). Finally in the (2n + 1)-grams, we take into
consideration n words surrounding the target word, in this
experiments n = 3, because it give us the better results.

During the experimentation phase, we change the number
of samples taken into consideration from the training phase.
For example the 25% of samples means that we have taken
into account 25% from the total number of samples that we
have obtained in the training phase. The Figure 1 shows how
the rate of precision varies across the percentage of samples.
We conclude that the lowest rate of disambiguation is mainly
due to the insufficient number of samples, which result in the

failure to meet all possible events. For that we try to collect as
many texts as we can, to extend the number of samples.

TABLE III

 RESULTS OBTAINED BY DIFFERENT METHODS VARYING THE WINDOW SIZE.

 Methods

tests

Naïve Bayes Decision List KNN

P MFS P MFS P MF
S

Bigram 23.04 29.17 21.43 25.29 26.3
3

30.2
1

Trigram 34.19 40.29 31.11 39.40 43.9
7

47.0
2

(2n+1)-
grams

47.89 54.70 43.21 53.68 51.3
2

53.4
6

The rate of precision is increased for the most frequent

sense, it is explained by the fact that the number of samples
containing the most frequent sense is more important that the
number of samples containing the other senses.

Fig. 1. Obtained results by the different algorithm depending on the amount of
data considered in the training phase.

Since that during the step where we have to count the
number of occurrences of each collocation contained in the
original sentence, we take into consideration all the derivation
of the words using the khoja stemmer. For example for the
word “أ��” “karaa” that occurs with the word “)آ�” “kataba”,
we have to count the number of occurrences of “ؤون��أت, !%�
�أت, ��أ1ّ�, %1�أ !%�أ�, …” in the extracted samples.

We detail in Table 4, the rate of precision obtained with and
without the stemming. The most supervised methods estimate
the probability of each word using the context of the previous
n-1 words. The problem of those methods is that unfortunately
it assigns zero to n-grams that have not been observed, in the
training phase. To avoid this problem we have to smooth the
zero counts (see Section 4.1).

In Table 4, we give also the results of the different methods
without and with the use of the smoothing for the (2n+1)
grams experiment.

From the results cited in table 4, we find that the stemming
increase the precision by a percentage that varies between 9%
and 21% for the different methods. It was supposed that the
smoothing will decrease the rate of precision, because it
increases all probabilities for unseen words.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

25 50 75 100

% Precision

% of the samples considered in the training phase

KNN

Decision List

 Naïve bayes
algorithm

52Polibits (46) 2012 ISSN 1870-9044

Laroussi Merhben, Anis Zouaghi, and Mounir Zrigui

TABLE IV
RATE OF PRECISION OBTAINED BY CONSIDERING THE STEMMING AND THE

SMOOTHING STEPS.

Tests

Methods

Without
stemming

and
smoothing

Without
Stemming
and with

smoothing

With
stemming and

without
smoothing

With
smoothing

and
stemming

Naïve
Bayes

31.25 31.75 47.89 48.23

Decision
List

22.06 22.56 43.21 43.86

KNN 42.19 42.69 51.32 52.02

Also the smoothing increases the precision and recall of

about 0.5%, and this increase is encouraging to perform the
disambiguation quality.

 As we have cited in the beginning of this section, the
supervised methods needs a highly amount of data. The results
varies from a word to another one and for the majority of the
tested words the k nearest neighbor algorithm gives the better
results and for some other words (“�0��،آ�(، �5” and their
corresponding transcription is “ayn, kataba, chaar”) the Naïve
Bayes algorithm is the best one. The rate of precision obtained
by the decision list is in all the case is more less than the rate
obtained by the Naïve Bayes algorithm. We may explain these
results by the fact that the other supervised algorithm needs a
so large training sets than the Naïve Bayes algorithm.

V. COMPARISON WITH SOME RELATED WORKS

We can cite the work of Mona Diab that uses a supervised
learning approach called "bootstrap"[15]. This approach is
highly accurate in the average of 90% of the evaluated data
items based on Arabic native judgment ratings and
annotations. Also, we find the work of Elmougy[16], where
the Naïve Bayes algorithm was applied for the Arabic
language. Some pretreatement steps were applied like word
rooting and eliminating stopwords, since that they use the net
and a dictionary to collect ten training samples to each word
for the testing phase. This work achieves a rate of precision of
73%. Compared to our work the amount of data is more less,
and collecting the testing samples from the net is a hard task
and not sufficient.

Finally, Soha M. Eid [17] compared the Rocchio Classifier
to Naïve Bayesian classifier, the most frequent sense and the
support vector machine using arabic lexical samples. The
Rocchio classifier achives an overall accuracy of 88% as the
best rate and reduce the error by over 14%. But they test only
five ambiguous words and they haven’t explain how tagging
the samples of the training phase.

Compared to our work we obtain a more less rate of
precision because of the important number of ambiguous
tested words (fifteen ambiguous words). Also as a
comparative study there is no test for the influence of the
window size, the stemming and the smoothing on the quality
of disambiguation.

For the other English related works, we can cite the
experimental study that compares some supervised algorithms
to disambiguate six senses of the word line [18] and [19]. Also

the work of Pedersen where he compared the Naïve Bayes
with Decision tree, Rule based learner, etc, to disambiguate
the word line and 12 other words [20]. All these works, found
that the Naïve Bayes algorithm performed as well as the other
supervised algorithms, which is the same results founded in
this work. Compared to the number of tested words by the
English related works, we have to point that we test fifteen
words for a derivational language that suffers from the lack of
resources.

We can also compare the obtained results by some works of
unsupervised Arabic word disambiguation, where the same
samples and the same words were tested. In the first
work [21], it was proposed to use some information retrieval
measures with the Lesk algorithm and it achieves a rate of
73%. In the second one [22], a Context matching algorithm
returns a semantic coherence score corresponding to the
context of use that is semantically closest to the original
sentence. This algorithm achieves a precision of 78%. In this
work, we obtain a less rate of precision. We can presume that
the supervised works are more satisfactory for the task of
Arabic Word Sense Disambiguation.

VI. CONCLUSION

This paper has presented an experimental study of some
supervised algorithms that were applied to perform word sense
disambiguation in Arabic. These algorithms are based on
tagged samples and a very important amount of data in the
used corpus.

For a sample of fifty ambiguous Arabic words that are
chosen by their number of senses out of contexts, the KNN
achieves the best performance. We conclude that the
supervised methods need an important amount of tagged data
to achieve satisfactory results. We propose in future works to
integrate some other resources and experiment some other
supervised methods.

REFERENCES

[1] R. Mihalcea, “Word Sense Disambiguation Using Pattern Learning and
Automatic Feature Selection”, in Journal of Natural Language and
Engineering (JNLE), December 2002, p.p: 348–358.

[2] H. T. Ng and H. B. Lee, “Integrating multiple knowledge sources to
disambiguate word senses: An examplar-based approach”. In
Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, Santa Cruz, CA, 1996, p.p: 40–47.

[3] L. Al-Sulaiti, E. Atwell, “The design of a corpus of contemporary
Arabic”. International Journal of Corpus Linguistics, vol. 11, 2006, pp.
135-171.

[4] M. Ben Mukarram and al-Ifriqi al-Misri ibn MANZUR, “ Lisàn al-
'arab”, Ibn Manzûr, 15 volumes, 1956, Beyrout.

[5] J. Savoy, Y. Rasolofo, “Report on the TREC-11 Experiment: Arabic,
Named Page and Topic Distillation Searches”. Eleventh Text Retrival
Conference TREC, 2002.

[6] C. Fox, “A stop list for general text”. SIGIR Forum, 1990, Vol. 24, No.
1-2, pp. 19-35.

[7] A. Chen, F. Gey, translation Term Weighting and Combining
Translation Resources in Cross-Language retrieval, Tenth text retrieval
conference, 2001, TREC.

53 Polibits (46) 2012ISSN 1870-9044

Lexical Disambiguation of Arabic Language: An Experimental Study

[8] S. Gerard, M.J. McGill, “Introduction to modern information retrieval”,
ISBN: 0070544840, 1983, p.p: 448.

[9] K. Shereen and G. Roland, “Stemming Arabic text”, Computer Science
Department, Lancaster University, Lancaster, UK, 1999.

[10] R. Navigili, “Word Sense Disambiguation: A Survey”. ACM
Computing Surveys, Vol. 41, No. 2, Article 10, Publication date:
February 2009.

[11] T. Pedersen, “Learning probabilistic models of word sense
disambiguation”, Ph.D. dissertation. Southern Methodist University,
Dallas, TX. 1998.

[12] D. Yarowsky, “Decision lists for lexical ambiguity resolution:
Application to accent restoration in Spanish and French”. In Proceedings
of the 32nd Annual Meeting of the Association for Computational
Linguistics (Las Cruces, NM), 1994, p.p: 88–95.

[13] A. Zouaghi, L. Merhbene, M. Zrigui, “Word Sense disambiguation for
Arabic language using the variants of the Lesk algorithm”,
WORLDCOMP’11, Las Vegas, juillet 2011, p.p. 561-567.

[14] D. Yarowsky, “One sense per collocation”. In Proceedings of the ARPA
Workshop on Human Language Technology, Princeton,1993, pp. 266-7.

[15] M. Diab and P. Resnik, “An unsupervised method for word sense
tagging using parallel corpora”. Proceedings of the ACL 40th Meeting
of the Association for Computational Linguistics, Philadelphia, U.S.A.
2002, pp. 255-262.

[16] S. Elmougy, H. Taher and H. Noaman “Naïve Bayes Classifier for
Arabic Word Sense Disambiguation”. In proceeding of the 6th
International Conference on Informatics and Systems, 2008, pp: 16-21.

[17] M. Soha Eid, et al., “Comparative Study of Rocchio Classifier Applied
to supervised WSD Using Arabic Lexical Samples”. Proceedings of the
tenth conference of language engeneering (SEOLEC’2010), Cairo,
Egypt, December 15-16, 2010.

[18] C. Leacock, G. Towell and E. Voorhees, “Corpus based statistical sense
resolution”. In Proceedings of the ARPA Workshop on Human
Language Technology, 1993, p.p. 260-265.

[19] R.J. Mooney, “Comparative experiments on disambiguating word
senses: An illustration of the role of bias in machine learning.
Proceedings of EMNLP, 1996, p.p: 82-91.

[20] T. Pedersen, “Learning Probabilistic Models of Word Sense
Disambiguation”. Ph.D. Dissertation. Southern Methodist University,
1998.

[21] A. Zouaghi, L. Merhbene and M. Zrigui, “Combination of information
retrieval methods with LESK algorithm for Arabic word sense
disambiguation”. Journal Article published in the Artificial Intelligence ,
Online First, 30 May 2011, Review; DOI: 10.1007/s10462-011-9249-3.

[22] L. Merhbene, A. Zouaghi and M. Zrigui, Ambiguous Arabic Words
Disambiguation. In Proceeding of The 11th ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD’10), The
University of Greenwich, London, United Kingdom, 9-11 June, 2010,
p.p. 157-164.

54Polibits (46) 2012 ISSN 1870-9044

Laroussi Merhben, Anis Zouaghi, and Mounir Zrigui

