
 

AbstractMachine learning and computational intelligence 

have facilitated the development of recommendation systems for a 

broad range of domains. Such recommendations are based on 

contextual information that is explicitly provided or pervasively 

collected. Recommendation systems often improve decision-

making or increase the efficacy of a task. An obvious application 

is a person’s physical health where it is advantageous to increase 

the number of healthy cells in the body and destroy cancerous cells 

(wherein cancer is your opponent), we can learn how to predict 

positive outcomes for such scenarios. Herein we show how 

frequent and discriminative subgraph mining can be employed to 

analyze a collection of healthcare dataset cases and make 

recommendations about sequences of actions that should take, as 

well as should not take, be made to increase the chances of a 

patient's recovery in the near future. As proof of concept, we 

present the results of an experiment that utilizes our strategy for 

one particular healthcare dataset, MIMIC. 

Index TermsRecommendation systems, graph mining, 

frequent subgraph mining, discriminative subgraph mining.  

I. INTRODUCTION 

The quick expansion of information and development in 

communication technology has initiated a new era for 

researchers to develop e-health applications that play a major 

role in developing and improving healthcare services. 

Information growth requires competent and scalable techniques 

to generate useful results. Prediction systems were proposed as 

a computer-based intelligent technique to deal with the 

information problem and product overload. 

These systems use knowledge discovery and statistical 

methods to recommend items to users. Medical data can have 

distinct types of characteristics and may contain various types 

of errors, such as missing or noisy data, which occur for a 

variety of reasons. For instance, a doctor may not request all 

appropriate tests while diagnosing a patient, some personal data 

may be neglected by users because of privacy matters, or values 

cannot be entered when the data is collected. Archiving 

accurate prediction is very challenging with such data, mainly 

due to the leak of explicit links between the actual state of the 

patients and recorded data. 

Improving the accuracy of the prediction or recommendation 

system by using collaborative graph mining techniques was the 
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primary goal of this work. This approach does not require any 

information other than the ICD-9-CM code to predict the 

medical conditions in order to assist physicians and patients. 

While clustering algorithms are commonly used for tackling 

similar problems, we chose the graph mining techniques due to 

the following issues associated with the clustering techniques: 

the need for data preparation, proximity measures, a method for 

handling outliers, and finally, reliance on a priori knowledge 

and user-defined parameters [1, 2, 3]. On the other hand, graph 

mining techniques are superior to clustering algorithms in terms 

of time complexity and are promising tools in data 

mining  research.  

In this study, we test the hypothesis that predictive analytics 

can be employed to examine a collection of patients’ cases and 

make recommendations to increase the possibility of recovery. 

Using a database of patients’ symptoms, we model each of 

those symptoms as a directed graph, and use frequent subgraph 

mining and discriminative subgraph mining, respectively, to 

look for patterns of symptoms that occurred in life cases; these 

form the basis of our recommendations for actions that a 

physician should take to keep the patient a live. Similarly, we 

look for patterns of symptoms that occurred in death cases; 

those become the basis of our recommendations for actions that 

a physician should not take to preserve a patient's life. 

We test the accuracy of our two methods by partitioning our 

database of patients’ cases into training and test datasets, and 

testing for the occurrence of true positives, true negatives, false 

positives, and false negatives. We also compare these two 

methods against each other, in terms of error rate of predictions. 

Scalability is a required feature of any method or system. The 

existence of this feature in our method made it possible to 

extend our proposed research to include the possibility of 

dealing with dynamic graphs, although our current scope of 

research deals with static graphs only. The use of parallel or 

distributed computing instead of sequential computing could be 

one of the proposed solutions for the future. 

The organization of this paper is as follows. Section 2 

provides a brief discussion of the main topics in this paper, 

including health recommendation systems and data mining 

techniques used in predictive analytics. The particular 

algorithms that we used for frequent subgraph mining and 
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discriminative subgraph mining are explained in more depth in 

Section 3. A description of the MIMIC data that we used for 

testing our method is provided in Section 4. Our experimental 

method and results are discussed in Section 5. A summary of 

this research and consideration of future work is discussed in 

Section 6. 

II.  BACKGROUND 

In this section, the studies closest to the focus of our paper 

are reviewed, where researchers have developed tools for 

helping doctors and patients. In [4], the authors introduced a 

health recommendation system as a general predictive model to 

assess disease risks. The authors built a collaborative 

assessment and recommendation engine called CARE that 

relies on the collaborative filtering (CF) method for providing 

recommendations to patients by collecting preferences from 

users that have similar behaviors. 

The utilized CF technique is derived from the vector 

similarity algorithm, which determines the similarity score 

based on the row vector. In another study [5], a hybrid 

recommendation system was proposed that combines CF with 

clustering on demographics of users with a weighted scheme. 

In this proposed system, item similarity and user clusters are 

computed offline, which makes the solution very scalable. In 

[6], CF was combined with techniques adopted from marketing 

domains and applied for the prediction of diseases. 

The authors consider the inadequate medical history and 

locate other patients similar to a given person, who then vote on 

every disease the person has not yet had based on their own 

medical histories. The main limitations of the CF method are 

the cold start, sparsity, and scalability problems, which 

collectively affect the accuracy of the method. 

The study presented in [7] has shown the application of the 

decision tree classification approach. Random forest was used 

to analyze and segment the patients’ records in training data into 

distinguished and related groups of classes based on the 

observed diagnosis scales. Ensembles of decision trees, such as 

random forests, are very fast to train, but quite slow to create 

predictions once trained. 

More accurate ensembles require more trees and thus operate 

more slowly. Another approach for disease prediction that 

combines clustering, Markov models, and association analysis 

techniques is proposed in [8]. The main weakness of Markov 

networks is their inability to represent induced and non-

transitive dependencies; two independent variables will be 

directly connected by an edge merely because some other 

variable depends on both. As a result, many useful 

independencies go unrepresented in the network. 

A. Data Mining Techniques Used in Predictive Analytics 

Utilizing mathematical modeling, the field of predictive 

analytics examines past examples of life and death to determine 

the variables that lead to recovery outcomes and can be used to 

make predictions about future actions.  It has been used widely 

in the financial and insurance sectors.  

Here we briefly discuss some of the most common types of 

data mining methods used for predictive analytics. 

Regression analysis: This method analyzes the relationship 

between a dependent variable and a set of independent 

variables. For healthcare data, the dependent variable would 

likely be the outcome of the cases (i.e., life or death), and the 

independent variables would be the various possible actions.  

Rule induction: Rule induction methods such as association 

rule mining seek to find relationships between variables in the 

dataset [9]. By applying association rule mining on only the life 

cases, we could identify some actions that the physician did to 

save the patients. Similarly, by mining the death cases, we could 

find some actions common to losing patients. 

Decision trees: Decision trees are most often used for 

classification and can be thought of as a graphical depiction of 

a rule; each branch of a decision tree can be thought of as a 

separate rule consisting of a conjunction of the attribute 

predicates of nodes along that branch [9]. One approach would 

be to construct decision trees from the life cases and death 

cases, respectively.  

Clustering: Clustering is a way to categorize a collection of 

instances in order to look for patterns; groups are formed to 

maximize similarity between the instances within a group and 

to maximize dissimilarly between instances in different groups 

[9]. Health data are already clustered into two groups: life and 

death. For the purpose of analyzing successful (and 

unsuccessful) actions, we would likely attempt to form clusters 

of action sequences.  

Neural networks: Neural networks are composed of a series 

of interconnected nodes that map a set of inputs into one or 

more outputs [9]. The interconnections between inputs (which, 

for the health data, could be actions in the case) could be 

determined based on an analysis of the patients' cases. 

Most of the above methods would be computationally 

prohibitive, and would probably not yield useful results, for the 

MIMIC health data [25] unless we employed some type of data 

reduction mapping, which subsequently could result in loss of 

useful, specific information. 

B. Subgraph Mining 

Many problems can be modelled with graphs, wherein 

entities are represented as vertices and relationships between 

entities are represented as edges. When the relationship 

between two vertices has some semantic distinction of a 

predecessor and a successor, the edges are directed and hence 

the graph is considered directed. The MIMIC dataset can be 

modelled as a directed graph where each action (e.g., 

symptoms) is represented by a vertex and an edge represents 

two consecutive actions that were made. By necessity, each 

vertex also must be identified by which physician performed 

that action. The actions do not form a strictly linear sequence 

because an action can generate multiple actions; for example, 

the attending physician may decide to perform a quick surgical 

intervention while giving the patient a group of medications at 

the same time, each of which becomes a new vertex. 

Subgraph mining is a technique used to discover a particular 

pattern in graphs. Two techniques will discuss here: 
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 Frequent Subgraph Mining. Given a single (directed or 

undirected) graph, it can be useful to know which 

subgraphs occur at least 𝑛 times where 𝑛 is a user-specified 

threshold for frequency. Similarly, given a collection of 

graphs and a frequency threshold 𝑛, it may be important to 

know which subgraphs occur in at least 𝑛 of those graphs. 

The process of answering this question is called frequent 

subgraph mining. Several methods for frequent subgraph 

mining were presented in [10,11,12,13]. Amongst many of 

the frequent subgraph mining algorithms that have been 

developed, computationally expensive extension/joining 

operations (to create larger candidate subgraphs from 

smaller frequent subgraphs) and false positive pruning (to 

reduce the search space) have been the biggest challenges 

that researchers have tried to address.  

 Discriminative Subgraph Mining. Discriminative subgraph 

mining seeks to find a subgraph that appears in one 

collection of graphs but does not appear in another 

collection of graphs. This approach has been used to study 

several problems including identifying chemical functional 

groups that trigger side-effects in drugs [14], classifying 

proteins by amino acid sequence [15], and identifying bugs 

in software [16,17,18]. Various discriminative subgraph 

mining algorithms are given in [16,17,18,19,20], some of 

which are tailored for particular problems; due to space 

limitations, they are not discussed in detail here. 

III. METHODOLOGY 

In this section, we discuss the two graph mining methods that 

we utilized for the healthcare predictive recommendation 

system. 

A. Frequent Subgraph Mining 

Format and save your graphic images using a suitable 

graphics processing program that will allow you to create the 

images as PostScript (PS), Encapsulated PostScript (EPS), or 

Tagged Image File Format (TIFF), sizes them, and adjusts the 

resolution settings. If you created your source files in one of the 

following you will be able to submit the graphics without 

converting to a PS, EPS, or TIFF file: Microsoft Word, 

Microsoft PowerPoint, Microsoft Excel, or Portable Document 

Format (PDF).  

1) Preliminaries 

Let 𝒢 = {𝐺1, 𝐺2, … , 𝐺𝑛} be a set of linear directed graphs which 

represents the historical data. Each 𝐺𝑖 represents a single 

symptom, such that 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) where 𝑉𝑖 represents a node 

labeled as a symptom code of a patient, while an edge in 𝐸𝑖 

represents two consecutive symptoms. A graph 𝑇 = (𝑉𝑇 , 𝐸𝑇) is 

a subgraph of 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) 𝑖𝑓𝑓 𝑉𝑇 ⊆  𝑉𝐺𝑖
, 𝐸𝑇 ⊆  𝐸𝐺𝑖

. 

Definition 1. Let 𝑇 = (𝑉𝑇 , 𝐸𝑇) be a subgraph of a graph 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖). A subgraph isomorphism of 𝑇 to 𝐺𝑖 is an injective 

function 𝑓: 𝑉𝑇 ⟶ 𝑉𝐺𝑖
 satisfying (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐺𝑖

 for all 

edges (𝑢, 𝑣) ∈ 𝐸𝑇 . Intuitively, a subgraph isomorphism is a 

mapping from 𝑉𝑇 to 𝑉𝐺𝑖
 such that each edge in 𝐸𝐺𝑖

 is mapped to 

a single edge in 𝐸𝑇 and vice versa. 

Problem 1. Given a set of graphs 𝒢, the frequent subgraph 

isomorphism mining problem is defined as finding all 

subgraphs T in G such that tG(T) ≥ τ, where tG(T) is the 

number of graphs in G that contain T and τ is the user-specified 

threshold. 

Problem 2. Given a set of graphs 𝒢 such that each Gi is divided 

into three phases Gi1, Gi1, Gi3 and a frequent subgraph T, the 

frequent phase mining problem is defined as finding all 

subgraphs T in Gij such that tGij
(T) ≥ τ, where τ is the user-

specified threshold. 

In our case, problem (2) counts the actual frequency (i.e., 

occurrences) of each subgraph provided that it is greater than or 

equal to 𝜏. However, this may not be useful in various cases [13 

and 21], while others necessitate the exact number of 

occurrences (like graph indexing in [22]). The choice of three 

for number of phases was an arbitrary decision influenced by 

board games such as chess that have traditionally been analyzed 

in terms of the moves made in the beginning, middle, and end 

of the game. 

2) Electronic GraMi Algorithm 

For the purpose of generating candidate subgraphs, a variety 

of frequent subgraph mining and subgraph extension algorithms 

have been developed, as discussed in previous work [12,22,23]. 

In particular, GraMi [23] is one of the most efficient methods 

and is the foundation for the work presented in this paper. The 

key ideas behind GraMi are briefly outlined here. Algorithm 1 

is used to find a set of all frequent edges fEdges in the collection 

of graphs = {𝐺i=1,...,n}. All of these frequent edges have support 

greater than or equal to a user-specified threshold 𝜏. Because of 

the anti-monotone property, only frequent edges are considered 

when finding the frequent subgraphs.  

Algorithm 1 Frequent Subgraph Mining - 𝐹𝑆𝑀 

Input 𝒢 = {𝐺𝑖=1,…,𝑛} and frequency threshold 𝜏 

Output All 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆(𝐺𝑖) with the support ≥ 𝜏 

  1: 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⟵ 𝜙 
  2: 𝐶𝑜𝑢𝑛𝑡 = 0 
  3:   for each edge 𝑒𝐺𝑖

 do 

  4:       if 𝑒𝐺𝑖
= 𝑒𝐺𝑖+1

 then 

  5:          𝐶𝑜𝑢𝑛𝑡 + + 
  6:       end-if 
  7:       if 𝐶𝑜𝑢𝑛𝑡 ≥ 𝜏 then 
  8:          𝑓𝐸𝑑𝑔𝑒𝑠 ⟵ 𝑓𝐸𝑑𝑔𝑒𝑠 ⋃ 𝑒𝐺𝑖

 

  9:       end-if 

10:    end-for 

11:    for each 𝑒 ∈  𝑓𝐸𝑑𝑔𝑒𝑠 do 

12:         𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⟵
 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⋃ 𝑆𝑢𝑏𝐸(𝑒, 𝒢, 𝜏, 𝑓𝐸𝑑𝑔𝑒𝑠) 

13:         Remove 𝑒 from 𝒢 and , 𝑓𝐸𝑑𝑔𝑒𝑠 

14:    end-for 
15: return 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 

Algorithm 2 is given each frequent edge to extend it to a new 

frequent subgraph. This is done by incorporating that edge with 
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another subgraph. All extensions created in previous iterations 

are excluded by utilizing the DFScode canonical form that was 

introduced for gSpan [23]. The set Candidate in Algorithm 2 

will include all the new subgraph extensions that had not been 

considered in prior iterations. 

Algorithm 2 Subgraph Extension – 𝑆𝑢𝑏𝐸 

Input 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆, 𝑓𝐸𝑑𝑔𝑒𝑠 and frequency threshold 𝜏 

Output All 𝑆𝑢𝑏𝑛𝑒𝑤 with the support ≥ 𝜏 

  1: 𝑆𝑢𝑏𝑛𝑒𝑤 ⟵ 𝜙 
  2: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⟵ 𝜙 
  3:   for each 𝑒 ∈  𝑓𝐸𝑑𝑔𝑒𝑠 and 𝑛 ∈  𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 do 

  4:       if 𝑒 fit to extend 𝑛 then 

  5:          Generate a new subgraph 𝐸𝑥𝑡𝑆 

  6:          if 𝐸𝑥𝑡𝑆 exist in 𝒢 and not generated before then 

  7:             𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⟵ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⋃  𝐸𝑥𝑡𝑆  
  8:          Else 

  9:             remove 𝐸𝑥𝑡𝑆 

10:          end-if 

11:        end-if 

12:   end-for 

13:   for each 𝐸𝑥𝑡𝑆 ∈  𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 do 
14:       if 𝐸𝑥𝑡𝑆 count in 𝒢 ≥ 𝜏 then 

15:          𝑆𝑢𝑏𝑛𝑒𝑤  ⟵
 𝑆𝑢𝑏𝑛𝑒𝑤 ⋃ 𝑆𝑢𝑏𝐸(𝐸𝑥𝑡𝑆, 𝒢, 𝜏, 𝑓𝐸𝑑𝑔𝑒𝑠) 

16:       end-if 
17:   End 

18: return 𝑆𝑢𝑏𝑛𝑒𝑤 

In subsequent steps, any new subgraph extension within the 

set Candidate that does not meet the support threshold 𝜏 

requirement will be discarded. If any of those subgraphs had 

been extended, it would produce a new non-frequent subgraph 

according to the anti-monotonic property. 

3) Using Frequent Subgraphs to Make Recommendations 

In this section we discuss the algorithms that we utilized in 

order to mine the patient dataset for frequent subgraphs and 

build a recommendation system. The task of finding the number 

of occurrences for each subgraph was carried out using 

Algorithm 3. 

Algorithm 3 Exact Subgraph Frequency 

Input 𝒢 = {𝐺𝑖=1,…,𝑛}, 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆 and frequency threshold 𝜏 

Output All the Exact Frequent Subgraph with their frequency 

  1: 𝐶𝑜𝑢𝑛𝑡 = 0 
  2:    for 𝑖 = 1 ⟶ all graphs in (𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠) do 

  3:         𝑓𝑟𝑞 =  0 

  4:        for 𝑗 = 1 ⟶ all graphs in (𝒢) do 

  5:             if findnode (𝐺𝑗 ,  𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖)  ≠  0 do 

  6:                 𝑡𝑒𝑚𝑝 ⟵ dfsearch (𝐺𝑗  ,  𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖) 

  7:                 if 𝑡𝑒𝑚𝑝 ≥ 𝑠𝑖𝑧𝑒( 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖) 

                            & 𝑖𝑠𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐( 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖 , 𝐺𝑗) do 

  8:                    𝑓𝑟𝑞 + + 
  9:                 end-if 

10:              end-if 

11:         end-for 

12:         if 𝑓𝑟𝑞 ≥ 𝜏 do 
13:            𝑐𝑜𝑢𝑛𝑡 + + 
14:            𝐸𝑥𝑎𝑐𝑡𝐹𝑆𝐺(𝑐𝑜𝑢𝑛𝑡) ⟵  𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖 
15:        end-if 

16:    end-for 

17: return 𝐸𝑥𝑎𝑐𝑡𝐹𝑆𝐺 

The mechanism for node-finding was used for matching the 

first node of a candidate subgraph with its occurrence in the 

original dataset. The objective of this process was to determine 

the starting point for conducting a depth-first search 

(DFSearch) to find all similar subgraphs in the recovery (or not 

recovery) graph collection. The expansion process will be done 

by adding new nodes that have met the threshold condition 

gradually. This process will contribute in maintaining the 

extracted subgraphs and avoiding recomputing everything from 

scratch. These results were stored temporarily in a temp set to 

compute their replication in the subsequent steps, and then the 

final result was placed within ExactFSG set. 

B. Discriminative Subgraph Mining  

The algorithm we employed for discriminative subgraph 

mining is similar to the approach taken in [17,18,26], but does 

not employ any heuristics specific to healthcare cases. Although 

we ran it sequentially, it easily lends itself to parallel or 

distributed processing. 

Let 𝑅+ and 𝑅− represent two sets of (undirected or directed) 

graphs for which we want to find a discriminative subgraph; 

that is, we want to find a subgraph that appears in the graphs in 

𝑅− and does not appear in the graphs in 𝑅+, or vice-versa. We 

shall refer to 𝑅+ as the positive graphs and 𝑅− as the negative 

graphs although this naming convention has no direct semantic 

correlation to the classification of the graphs in those respective 

sets (e.g., ‘recovery’ does not necessarily mean positive).  

Algorithm 4 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑅+, 𝑅−, 𝛼, 𝛽) 

𝑅+:  set of positive graphs 

𝑅−:  set of negative graphs 

𝛼 : percentage of graphs that discriminative subgraph need not 

be present in 𝑅+ when relaxing conditions 

𝛽 : percentage of graphs that discriminative subgraph need not 

be present in 𝐶− when relaxing conditions 

  1: remove non-discriminative edges from graphs in 𝑅+ 

and 𝑅−; 

  2: 𝐺 =  𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅− , 𝑅+ ); 
  3:    if 𝐺 is empty then 

  4:       𝐺 =
 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅− , 𝑅+, |𝑅+| ∗  𝛼); 

  5:       if 𝐺 is empty then 

  6:          𝐺 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅+ , 𝑅−); 
  7:          if 𝐺 is empty then 

  8:             𝐺 =
 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅+ , 𝑅−, |𝑅−| ∗  𝛽); 

  9:          end-if 

10:        end-if 

11:      end-if 

12: return 𝐺 

The function 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 4) 

first removes non-discriminative edges from the graphs in both 

sets; since such edges appear in the graphs in both sets, they 

cannot be used to differentiate the graphs in the those sets. 

𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ then calls 

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 5) to try to find a 

subgraph that is common to all graphs in 𝑅−, but not common 

to all the graphs in 𝑅+. If we are unable to find such a graph, 

then the function 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ 

(Algorithm 6) is called, which relaxes the requirement that the 
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subgraph we seek not be present in all of the 𝑅+ graphs; instead 

the subgraph only has to not be present in 𝛼 ∗ |𝑅+| of the 𝑅+ 

graphs, where 𝛼 is a user-specified parameter (our default is 

𝛼 =  0.5). 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ and 

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ use a function called Augment; 

this function takes a subgraph 𝐺 and adds to it an edge (and 

possibly a node) such that the source vertex exists in 𝐺, and the 

edge (and destination node) exists in all graphs in subgraph 

collection 𝑆1. In this way, a subgraph with an additional edge 

that exists in all elements of 𝑆1 is created and considered by the 

algorithm. 

Algorithm 5 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑆1, 𝑆2) 

𝑆1:  set of graphs 

𝑆2:  set of graphs 

  1: 𝐹𝑟𝑒𝑞𝑆𝐺 = queue of 1-edge subgraphs in 𝑆1; 

  2:   while 𝐹𝑟𝑒𝑞𝑆𝐺 is not empty do 

  3:            𝐺 =  𝐹𝑟𝑒𝑞𝑆𝐺.dequeue ( ); 
  4:              if 𝐺 is not in any graph in 𝑆2then 

  5:                 return (𝐺); 

  6:              end-if 

  7:        NewGraphs = Augment (𝐺); 

  8:            for each graph 𝐺′ in NewGraphs do 

  9:                  𝐹𝑟𝑒𝑞𝑆𝐺.enqueue (𝐺′); 

10:            end-for 

11: end-while 

12: return (empty graph)  

Algorithm 6 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑆1,  𝑆2, 𝛾) 

𝑆1:  set of graphs 

𝑆2:  set of graphs 

 𝛾 :  threshold for number of graphs discriminative subgraph 

must be present in 

  1: 𝐹𝑟𝑒𝑞𝑆𝐺 = queue of 1-edge subgraphs in 𝑆1; 

  2:   while 𝐹𝑟𝑒𝑞𝑆𝐺 is not empty do 

  3:            𝐺 =  𝐹𝑟𝑒𝑞𝑆𝐺.dequeue ( ); 
  4:            if 𝐺 is in < 𝛾 graph in 𝑆2then 

  5:                return (𝐺); 

  6:            end-if 
  7:        NewGraphs = Augment (𝐺); 

  8:            for each graph 𝐺′ in NewGraphs do 

  9:                  𝐹𝑟𝑒𝑞𝑆𝐺.enqueue (𝐺′); 

10:            end-for 

11:     end-while 

12: return (empty graph) 

If we still fail to find a discriminative subgraph, then the 

difference likely does not involve edges that are in all graphs in 

𝑅− and not in graphs in 𝑅+, but rather involves edges in the 𝑅+ 

graphs that are not in the 𝑅− graphs. Thus, we again call 

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ, but reverse the order of the 

parameters (𝑅+ and 𝑅−) from our previous call. If we still fail 

to find a discriminative subgraph, we again call 

𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 6) and 

look for a subgraph that only has to not be present in 𝛽 ∗ |𝑅−| 
of the 𝑅− graphs, where 𝛽 is a user-specified parameter (our 

default is 𝛽 =  0.5). 

It is possible that the resulting discriminative graph will be 

disconnected. Additionally, it could be the case that multiple 

subgraphs could qualify as a discriminative subgraph. The 

algorithm addresses both of these cases by returning the 

maximal discriminative subgraph; this result may be 

disconnected and will include all possible discriminative edges. 

It should be noted that it also is possible that our algorithm will 

not find any subgraph that meets the discriminative conditions. 

This could occur if the requirement that at least 𝛼 (𝛽) of the 

graphs in 𝑅−(𝑅+) must have at least one edge in common has 

not been satisfied. 

The computational complexity of the process is dependent 

upon the number of graphs in each collection and the number 

of edges in each graph. As specified in line 1 of 

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ, we begin by examining each 

single edge from each graph in one of the graph collections. 

However, in lines 7-9 of that algorithm, we potentially build 

larger subgraphs that must be searched for; this is the subgraph 

isomorphism problem, which is NP-complete. 

IV. DATA DESCRIPTION 

Medical Information Mart for Intensive Care (MIMIC) [25] 

is online medical data provided critical care data for over 

40,000 patients admitted to intensive care units. MIMIC is 

made available largely through the work of researchers at the 

MIT Laboratory for Computational Physiology and 

collaborating research groups. In this study, a dataset of 46520 

patients involving 2 cases, 30761 for life diagnoses ICD and 

15759 for death diagnoses ICD, was obtained for diagnosed 

ICD patients. Each of these cases contained the sequence of 

diagnoses performed by each of two cases, with a designation 

of which patient is still alive. Each diagnosis in the dataset was 

encoded with 3-5 digits. Certain digits represented the patient 

ID, and other digits represented a counter (the number of times 

a particular patient presents with the same diagnosis). 

V.  EXPERIMENTAL EVALUATION 

In this section, we discuss the details of an experiment we 

conducted to test the hypothesis that predictive analytics, 

specifically frequent and discriminative subgraph mining, can 

be employed to examine a collection of patients' diagnoses and 

make recommendations as to what physician should do, and 

should not do, in order to increase the chances of making them 

recover in the near future. 

A. Experimental Setup 

We analyzed each patient-specific diagnosis group in one 

phase; the total number of diagnoses for each patient (by both 

the life diagnoses and death diagnoses) ranged from 6 to 358. 

For each phase analyzed, 80% of the data were used for training 

and the remaining 20% were used for testing with 10-fold cross-

validation. A random number generator 

(www.random.org/lists/) was used to determine which patients 

were assigned to each partition (with no duplication). This 

process was repeated ten times for each phase in order to avoid 

any bias during the measure of error rate. Accuracy was used to 

evaluate the closeness of the measured value to the true value. 

Equation 1 is the mathematical formula of accuracy where 𝑇𝑃 

is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is false positive, and 

𝐹𝑁 is false negative: 

13 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

Graph Mining Healthcare Approach: Analysis and Recommendation
IS

S
N

 2395-8618

http://www.random.org/lists/


 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 . (1) 

If a recommendation for what should be done to recover 

(subgraph) was found in one of the life graphs in the test 

partition, it was counted as a true positive (𝑻𝑷); if instead that 

recommendation (subgraph) was found in one of the death 

graphs in the test partition, it was counted as a false positive 

(𝑭𝑷). If a recommendation for what should not be done to avoid 

not recover (subgraph) was found in one of the death graphs in 

the test partition, it was counted as a true negative (𝑻𝑵); if 

instead that recommendation (subgraph) was found in one of 

the life graphs in the test partition, it was counted as a false 

negative (𝑭𝑵). The error rate was calculated as 𝟏 –  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚, 

and was averaged over the ten iterations of the 10-fold cross 

validation. For each phase “1, 2, and 3” of the dataset cases, we 

used 10-fold cross validation. Ten partitions were created, each 

one contained 4652 cases; 10 iterations were run in those cross 

validations. By “cases” we mean both the life and death for that 

dataset cases. 

B. Experimental Results 

In this section, we present the results of analyzing the MIMIC 

dataset using both frequent subgraph mining and discriminative 

subgraph mining. The algorithms of frequent subgraph mining 

presented in Section 3.1 were (collectively) implemented in 

MATLAB and Java. The algorithms of discriminative subgraph 

mining presented in Section 3.2 were implemented in Python 

3.7. A combination of Python programs and bash scripts were 

created for data file conversions and batch program executions. 

Our experiments were executed on an Intel(R) Core (TM) i7-

6700 CPU@3.40GHz computer with 32GB memory. 

1) FSM - Experimental Results 

Tables 1 and 2, show some of the experimental results of 

frequent subgraph mining using a threshold of 10 for the life 

and death datasets consisting of 46520 patients diagnosed. The 

first and second columns show the diagnoses in the frequent 

subgraphs with their number of occurrences from the entire 

dataset, respectively. The third column in each table is a 

classification of the majority of that subgraph’s actions; we 

classified that diagnosis actions as either recovered or not 

recovered (of an entity in the MIMIC dataset space). These 

results were obtained by performing 10-fold cross-validation, 

repeated ten times. Each time, for the 46520-case dataset, 

41868 cases were selected randomly (without duplication) for 

training, and the remaining 4652 cases were used for testing. 

For the MIMIC dataset, 809,356 frequent subgraphs were 

found that constituted “should do to recover” recommendations 

and 265,722 frequent subgraphs were found that represented 

“should not do to not recover” recommendations in phase 1. 

This number decreased in phase 2 to 472,535 frequent 

subgraphs were found that represented “should do” 

recommendations and 93,321 frequent subgraphs were found 

that characterized “should not do” recommendations. For the 

final phase of MIMIC, 108,271 frequent subgraphs were found 

that characterized “should do” recommendations; this was an 

58.4% decrease from the number found in phase 1 and an 39.7% 

decrease from the number found in phase 2. In this phase, 

23,545 frequent subgraphs were found that represented “should 

not do” recommendations; this was an 35.2% decrease from the 

number of such subgraphs found in phase 1 and an 25.3% 

decrease from the number found in phase 2. 

The size ranged from two nodes with one edge to one 

hundred and seventy-seven nodes with one hundred and 

seventy-six edges in the MIMIC dataset. All of the two-node 

subgraphs were ignored because of the limited information they 

provide for the recommendation objective (i.e., only two 

diagnose) compared to larger subgraphs. Frequent subgraphs 

that were found in the life cases graphs indicate symptoms that 

are recommended for physician to accept, whereas frequent 

subgraphs that were found in the death cases graphs indicate 

symptoms that are recommended that physician should avoid. 

The benefit of the counter attached to each symptom reflects 

the relative number of times had appeared that type of 

symptoms in that case. Characterizing the actions, such as 

recover or not recover, gives a general notion of the strategy the 

physician is employing in that sequence and would facilitate 

mapping one case’s actions to another’s. 

Tables 3 show the average error rate for each of the cross-

validation tests for each phase, as well as the average error rate 

over each phase’s 10 tests for MIMIC, respectively.  

TABLE I 

LIFE DATA OF FSM – MIMIC DATASET 

Life cases Subgraph Frequency Classification 

40391003 2851000 V4511001 V4582012 53 recover 

V433003 412012 4241008 4280008 42 no action 

82121001 82300001 E8217002 95892001 101 not recover 

2851000 V4511001 E8217002 V433004 68 no action 

TABLE II 

DEATH DATA OF FSM – MIMIC DATASET 

Death cases Subgraph Frequency Classification 

2948022 78701001 2449001 V4501012 71 no action 

E9352002 72141002 2148003 V5865003 39 not recover 

V290003 V502005 V290004 V053012 59 not recover 

4109002 V1007001 40390003 V290004 

E8780001 

63 no action 

TABLE III 

CROSS-VALIDATION TEST RESULTS OF FSM – MIMIC DATASET 

Test No. Phase 1 Avg. 

Error Rate 

Phase 2 Avg. 

Error Rate 

Phase 3 Avg. 

Error Rate 

1 49.52% 32.16% 18.23% 

2 52.93% 42.52% 13.63% 

3 51.24% 40.61% 12.55% 

4 55.13% 40.85% 14.32% 

5 49.55% 39.12% 11.98% 

6 50.94% 39.66% 14.44% 

7 55.82% 39.88% 15.17% 

8 48.59% 41.25% 11.82% 

9 51.64% 38.22% 11.56% 

10 49.66% 39.93% 13.54% 

Avg. 51.50% 39.42% 13.72% 
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The resulting predictive accuracy was not good for frequent 

subgraph mining; in general, frequent subgraphs can have very 

low frequencies at times and high frequencies at other times. 

The collective recommendations (for actions that should be 

made and actions that should not be made) were accurate 

approximately 51.50%, 39.42%, and 13.72% of the time for 

phases 1, 2, and 3 of MIMIC, respectively. We attribute this 

increase in the error rate to the increase in the number of recover 

frequent subgraphs found in the death dataset and the not 

recover frequent subgraphs found in the life dataset.  

2) DSM - Experimental Results 

Tables 4 show the average error rate for each of the cross-

validation tests for each phase, as well as the average error rate 

over each of the phase 10 tests for MIMIC, respectively. The 

resulting predictive accuracy was good, considering that, in 

general, discriminative subgraphs can have very low 

frequencies. The collective recommendations (for action that 

should be made and action that should not be made) had error 

rates of approximately 13.37%, 8.79%, and 1.53% of the time 

for phases 1, 2, and 3 of MIMIC, respectively. We attribute this 

decrease in the error rate to the decrease in the number of 

recover discriminative subgraphs found in the death dataset and 

the not recover discriminative subgraphs found in the 

life dataset. 

For phase 1 of the MIMIC dataset, when testing all pairs of 

2 life and 2 death graphs, 92,436 discriminative subgraphs were 

found that constituted “should do to recover” recommendations 

and 32,366 discriminative subgraphs were found that 

represented “should not do to not to recover” recommendations. 

The average size of the “should do” recommendation subgraphs 

was 26 edges; the smallest had 1 edge and the largest had 151 

edges. The average size of the “should not do” recommendation 

subgraphs was 21 edges; the smallest had 1 edge and the largest 

had 133 edges.  

The situation was not similar in phase 2 of MIMIC, where 

there were about 42% less than the respective numbers of 

subgraphs found in phase 1. When testing all pairs of 2 life and 

2 death graphs, 43,636 discriminative subgraphs were found 

that represented “should do” recommendations and 16,441 

discriminative subgraphs were found that characterized “should 

not do” recommendations. This is not surprising as the number 

(and order) of different actions that a physician could (and 

likely did) make increased at this point, thereby reducing the 

number of graphs that had edges in common and could meet the 

criteria of FindDiscriminativeGraph. The average size of the 

“should do” recommendation subgraphs was 19 edges, which 

was only slightly smaller than what had been found in phase 1; 

the smallest had 1 edge and the largest had 121 edges. The 

average size of the “should not do” recommendation subgraphs 

was 16 edges; the smallest had 1 edge and the largest had 

93 edges. 

In the final phase of MIMIC, 21,311 discriminative 

subgraphs were found that characterized “should do” 

recommendations; this was a 47.2% decrease from the number 

found in phase 1 and a 23% decrease from the number found in 

phase 2.  

In this phase, 9,3911 discriminative subgraphs were found 

that represented “should not do” recommendations; this was an 

50.8% decrease from the number of such subgraphs found in 

phase 1 and a 29% decrease from the number found in phase 2. 

The average size of the “should do” recommendation 

subgraphs was 18 edges; the smallest had 1 edge and the largest 

had 89 edges. The average size of the “should not do” 

recommendation subgraphs was 14 edges, which is close to the 

average size between what was seen for phases 1 and 2; the 

smallest had 1 edge and the largest had 86 edges. 

Instead of looking at all the result subgraph 

(recommendations), the physician should be able to view only 

the top k “should” and “should not do” subgraphs, where k is a 

physician-specified parameter. For example, among the top ten 

frequently recommended “should do” subgraphs in phase 1 of 

MIMIC, 12 had 6 edges (i.e., 7 actions) and 18 contained 6-7 

edges (i.e., 7-8 actions).  

In contrast, 8 of the 10 most frequent “should not do” 

subgraphs contained 5-6 edges (i.e., 6-7 actions) and 2 

contained only 1 edge (i.e., 2 actions). It should be noted that 

the “should” and “should not do” subgraphs can vary in the 

number of edges they contain; thus, we may not be able to 

provide as much information about what should not do as we 

can say about what should do (or vice versa).  

The type of action can have an important role in 

characterizing a recommended subgraph (i.e., predominantly 

recover, not recover, or no action). In the MIMIC dataset, 

creation of territory files likely is considered a recover action. 

Another observation that can be made from discriminative 

subgraphs is a counter that is associated with both of these types 

of actions. For each patient, the counter for each type of action 

begins at 1 and is incremented by 1 each time that type of 

symptom appears. For example, edges (V4581023, 4019003, 

V4581024, V4581025, 53081001, V1051001) in phase 2 

represent stability of the disease state in a certain period (actions 

beginning V4581) with counters 023, 024, and 025 (where the 

counter is initialized to 100), Indicated that the condition has 

stabilized after taking urgent action by taking a specific 

treatment. Their occurrence in a discriminative subgraph would 

indicate that it either is or is not advisable to take this 

action early. 

TABLE 4 

CROSS-VALIDATION TEST RESULTS OF DSM – MIMIC DATASET 

Test No. Phase 1 Avg. 

Error Rate 

Phase 2 Avg. 

Error Rate 

Phase 3 Avg. 

Error Rate 

1 13.32% 8.60% 0.92% 

2 13.54% 8.08% 1.70% 

3 12.95% 9.11% 0.80% 

4 14.66% 9.20% 1.96% 

5 13.22% 8.35% 1.45% 

6 13.62% 9.20% 2.00% 

7 12.10% 8.48% 1.46% 

8 13.48% 9.52% 1.73% 

9 14.35% 8.33% 1.63% 

10 12.45% 9.11% 1.65% 

Avg. 13.37% 8.79% 1.53% 
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VI. CONCLUSION AND FUTURE WORK 

The use of recommendation systems has become widespread 

in our society. In general, they examine historical data and try 

to predict what should be done in the future. Herein we have 

applied graph data mining techniques, frequent and 

discriminative subgraph mining, to healthcare system, MIMIC, 

to develop a system that can provide recommendations in order 

to improve a patient’s chances of recovery. We modelled each 

case as a graph and found a collection of subgraphs that 

specified sequences of actions that physician should, and should 

not, make in each of three phases of the case. When testing 

datasets of both cases “life and death”, experimental results of 

discriminative subgraph mining showed that the accuracy of 

our recommendations was high (an average of 93% accuracy 

for all three phases), and better than when using frequent 

subgraph mining.  

Overall, our recommendations for our test were more 

informative in terms of what a physician should do at each of 

three phases in order to keep the patient a live and make him/her 

recover; however, we also were able to provide some 

information about what the physician should not do. Most 

importantly, this study has served as a proof of concept that the 

discriminative subgraph approach may be a promising strategy 

for not only healthcare predictive analytics, but also for other 

problem domains that involve direct and indirect resource 

generation and destruction. In the future we plan to establish a 

mapping between action types and assets so that a more 

generalized recommendation system can be developed. We also 

hope to explore ways to make the algorithms more efficient, 

perhaps applying some heuristics to reduce the search space that 

are inherent to the nature of healthcare data. Ultimately, we 

intend to abstract this strategy to other problem domains such 

as natural disasters such as earthquakes and hurricanes tracking 

and prediction systems using the same foundation of analyzing 

examples of survivance or not in order to make 

recommendations for future positive outcomes. 
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