
  
  

Abstract—In CAD/CAM modeling, objects are represented 

using the Boundary Representation (ANSI Brep) model. Detection 

of possible intersection between objects can be based on the 

objects’ boundaries (i.e., triangulated surfaces), and computed 

using triangle-triangle intersection. Usually only a cross 

intersection algorithm is needed; however, it is beneficial to have a 

single robust and fast intersection detection algorithm for both 

cross and coplanar intersections. For qualitative spatial reasoning, 

a general-purpose algorithm is desirable for accurately 

differentiating the relations in a region connection calculus, a task 

that requires consideration of intersection between objects. Herein 

we present a complete uniform integrated algorithm for both cross 

and coplanar intersection. Additionally, we present parametric 

methods for classifying and computing intersection points. This 

work is applicable to most region connection calculi, particularly 

VRCC-3D+, which detects intersections between 3D objects as well 

as their projections in 2D that are essential for occlusion detection.  

Index Terms—Intersection detection, classification predi-

cates, spatial reasoning, triangle-triangle intersection. 

 

I. INTRODUCTION 
 

HERE are relatively few software applications supporting 

qualitative spatial reasoning. In part, this may be due to 

the complexity in determining the intersection between 2D/3D 

objects. Yet the ability to detect the existence of a possible 

intersection between pairs of objects can be important in a 

variety of problem domains such as geographic information 

systems [1], CAD/CAM geometric modeling [2], real-time 

rendering [3], geology [4], networking and wireless 

computing.  

In qualitative reasoning, it is not necessary to know the 

precise intersection between pairs of objects; it is sufficient to 

detect and classify the intersection between objects. Typically, 

the boundary of each object is represented as a triangulated 

surface and a triangle-triangle intersection is the 

computational basis for determining intersection between 

objects. Since an object boundary may contain thousands of 

triangles, algorithms to speed up the intersection detection 

process are still being explored for various applications, 

sometimes with a focus on innovations in processor 

architecture [5, 6, 7].  

For pairs of triangles, there are three types of intersections: 

zero dimensional (single point), one-dimensional (line 

segment), and two dimensional (area) intersection. In the past, 

almost all attention has been devoted to determining the cross 

intersections, which resulted in an absence of analysis in two-

dimensional intersections. Coplanar triangle intersections are 

unique because an intersection may be any of the 

aforementioned three types. If the triangles cross-intersect, 

only zero or one-dimensional intersection is possible. If the 

planes are parallel and distinct, the triangles do not intersect. 

If the triangles are coplanar, then there is a possibility of 

intersection. Even when the cost of intersecting a triangle pair 

is constant, the cost of intersecting a pair of objects A and B is 

order O(TA × TB) where TA is the number of triangles in object 

A, and TB is the number of triangles in object B.  

In qualitative spatial reasoning, spatial relations between 

regions are defined axiomatically using first order logic [8] or 

the 9-Intersection model [9]. Using the latter model, the 

spatial relations are defined using the intersections of the 

interior, boundary, and exterior of one region with those of a 

second region. It has been shown in [10] that it is sufficient to 

define the spatial relations by computing 4-Intersection 

predicates, (namely, Interior–Interior (IntInt), Boundary–

Boundary (BndBnd), Interior–Boundary (IntBnd), and 

Boundary–Interior (BndInt)) instead of 9-Intersections.  

Since IntBnd and BndInt are the converse of each other, 

only three algorithms are necessary for these predicates. In 

order to implement these algorithms, we must first solve the 

triangle-triangle intersection determination, as it is a lower 

level problem that must be solved in order to determine the 4-

Intersection predicates that, in turn, determine the qualitative 

spatial relation between two objects. 

This paper is organized as follows: Section II briefly 

reviews the background and related cross intersection 

framework. Section III discusses motivation and conceptual 

classification of intersections, whereupon Section IV develops 

the overall main algorithm for triangle-triangle intersection. 

Section V describes the area intersection algorithm for general 
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triangles, and predicates for classifying the intersection 

between pairs of triangles, after which Section VI discusses 

the applications to qualitative spatial reasoning.  

 

II. BACKGROUND 
 

A. The Traditional Algorithm  
 

Many papers have been written on the intersection between 

a pair of triangles [3, 11, 12, 13, 14, 15]. Interestingly, most of 

them simply reinvent the algorithm and implement it slightly 

differently and more efficiently, with no innovation. A recent 

paper [7] surveyed various approaches for determining the 

cross intersection detection, and developed a fast vector 

version of the cross intersection detection, as well as 

classification of the type of intersection. Our approach is 

exhaustive, integrating both cross and coplanar intersection, 

and analytically more rigorous than the previous approaches 

[3, 11]. It is described in the next section where we follow the 

approach similar to the techniques used in [7] for cross 

intersection. The cross-intersection standalone algorithm is 

described as follows:  

boolean triTriCrossInt (tr1 = ABC, tr2 = PQR) 

input: two triangles whose planes cross intersect 

output: true if the triangles intersect, else false 

The vector equations for two triangles ABC and PQR are  

R1(u, v) = A + u U + v V, 0 ≤ u, v, u + v ≤ 1 

R2(s, t) = P + s S + t T, 0 ≤ s, t, s + t ≤ 1, 

where U = B – A, V = C – A, and S = Q – P, T = R – P. 

 Let N1 = U×V, N2 = S×T be normals to the planes 

supporting the triangles directed away from the objects. 

The triangles intersect if there exist some barycentric 

coordinates (u, v) and (s, t) satisfying the equation 

A + u U + v V = P + s S + t T 

Since N1xN2 ≠ 0 for cross intersecting triangles, and S 

and T are orthogonal to N2, the dot product of this 

equation with N2 eliminates S and T from the above 

equation to yield 

u U•N2 + v V•N2 = AP•N2 

This is the familiar equation of a line in the uv-plane for 

real variables u, v. The vector equation using real 

parameter  becomes 
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If there is a  in these three equations such that 0 ≤ u, v, u 

+ v ≤ 1, the triangles are ensured to intersect. The range 

of values of  is bounded by m and M. This detects 

whether the two triangles cross intersect only.  

 In fact, for precise intersection, using m, M, as 

parameter values, we compute (um, vm) and (uM, vM) for 

the segment of intersection on ABC. Similarly the values 

(sm, tm) and (sM, tM) represent the segment of intersection 

on PQR. The precise intersection between the two 

triangles is the common segment of these two segments. 

If the segment degenerates into a single point, the 

parameter values also can be used to classify the 

intersection as a vertex, an edgeInterior point or 

triangleInterior point in the triangle ABC.  

 

III. CLASSIFICATION OF TRIANGLE INTERSECTIONS 
 

For spatial reasoning, we detect intersection between pairs 

of 2D/3D objects and classify pairwise intersection predicates 

IntInt, IntBnd, BndInt, and BndBnd, without computing the 

extent of intersections. The cross intersection can be 

characterized into seven categories [7]. When cross 

intersection is insufficient to determine tangential intersection, 

some applications such as RCC8 and VRCC-3D+ [6] resort to 

coplanar intersection to support relations such as externally 

connected (EC) and tangentially connected (TPP, TPPc).  

The precise intersection of coplanar triangles is a little more 

complex because it can result in area intersection as well; the 

coplanar triangles intersection can be classified as: Single 

Point Intersection (vertex-vertex, vertex-edgeInterior), Line 

Segment Intersection (edge-edgeCollinear), Area Intersection 

bounded by 3, 4, 5, 6 edges, (Fig. 4, Fig. 5(a, b, c)). A triangle 

may be entirely contained in the other triangle (Fig. 5(d)). In 

this paper, we present a detailed analytical study of the 

intersection of coplanar triangles, which has not been 

previously presented.  

The intersection between a pair of triangles can be 

abstracted as Cross (C) intersection or Parallel (P) coplanar 

triangles intersection. For taxonomy of cross and parallel 

coplanar triangles, the conceptual intersections are supported 

with figures presented here. The specific cases are as follows: 

No intersection  

disjoint (C, P) (see Fig. 1) 

Single Point Intersection 

vertex-vertex Intersection (C, P) (see Fig. 2(a)) 

vertex-edgeInterior Intersection (C, P) (see Fig. 2(b)) 

14Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan



 

vertex-triangleInterior Intersection (C) (see Fig. 2(c)) 

edgeInterior-edgeInteriorCross Intersection (C) (Fig. 2(d)) 

Line intersection 

edge-edgeCollinear Intersection (C, P) (see Fig. 3(a)) 

edge-triangleInterior Intersection (C) (see Fig. 3(b)) 

triangleInterior-triangleInterior Intersection (C) (Fig. 3(c)) 

Area Intersection  

vertex-triangleInterior Intersection (P) (see Fig. 4, Fig. 5(a, 

b, d)) 

edgeInterior-edgeInterorCross Intersection (P) (Fig. 4, Fig. 

5(a, b, c)) 

edge-triangleInterior Intersection (P) (see Fig. 5(d)) 

triangleInterior-triangleInterior Intersection (P) (see Fig. 4, 

Fig. 5(a, b, c, d)) 

It is possible that two triangles cross intersect in a line 

segment even when a triangle is on one side of the other 

triangle. In that case, it may be desirable to know which side 

of the other triangle is occupied. In Fig. 3(b), the triangle PQR 

(except QR which is in ABC) is on the positive side of 

triangle ABC. So PQR does not intersect the interior of object 

of triangle ABC. We will use this concept in Section VI. 

Section VII concludes, followed by references in Section VIII. 

It should be noted that the vertex-edge intersection 

encompasses vertex-vertex, vertex-edgeInterior intersection, 

whereas the vertex-triangle intersection encompasses vertex-

vertex, vertex-edgeInterior, and vertex-triangleInterior. Thus 

1D JEPD cross intersection between ABC and PQR can be 

one of the three possibilities: (1) collinear along edges, (2) an 

edge of PQR lying in the plane of triangle ABC, or (3) 

triangles “pierce” through each other yielding an intersection 

segment. 

 

IV. THE OVERALL ALGORITHM 

(INTERSECTION BETWEEN TRIANGLES) 
 

In this section, we describe the overall structure of the 

triangle-triangle intersection. In Section IV.A, we develop 

sub-algorithms that support the main algorithm at its 

intermediate steps. In addition to existence or nonexistence of 

an intersection, this algorithm also supports other auxiliary 

computations, (e.g. classification of intersection and the 

calculation of 3D intersection points, segment or area) which 

are necessary for some applications. 

 

A. Description of the Overall Algorithm 

 

The general structure of the overall triangle-triangle 

intersection algorithm is presented here. The description is in 

Python style so that it can be easily transported to 

programmable code. Here is the traditional approach to the 

algorithm, whereas our approach is presented in Section V. 

 

Fig. 1. Disjoint triangles: Planes supporting the triangles may be 

crossing or coplanar. The triangles do not have anything in common. 

 

Fig. 2. Triangles intersect at a single point. The intersections 

between triangles ABC and PQR are JEPD (Jointly Exhaustive and 

Pairwise Distinct) cases of Single Point intersection between 

triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur in 

both cross and coplanar intersections. However, (c) vertex-

triangleInterior and (d) edgeInterior-edgeInterior intersection point 

can occur in cross intersection only. 

 

Fig. 3. Triangles intersect in a line segment. (a) edge-edgeCollinear 

intersection can occur in both cross and coplanar intersections. 

However, (b) edge-triangleInterior and (c) triangleInterior-

triangleInterior intersection segment occur in cross intersection only.  
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Fig. 4. Triangles intersect in an area. (a) One edge of triangle PQR 

and two edges AB and AC of triangle ABC intersect, vertex A is in 

the interior of PQR. (b) One edge of triangle PQR with three edges 

of ABC, and vertex A in the interior of PQR. The common area is 

bounded by three edges. The intersections vertex-triangleInterior, 

edge_triangle, edgeInterior-triangleInterior hold. 

 

Fig. 5. Triangles intersect in an area (continued). The coplanar 

triangle intersections are bounded by four, five, and six edge 

segments. (a) Two edges of triangle PQR and two edges AB and AC 

of triangle ABC intersect, vertex A is in the interior of PQR, vertex 

R is in the interior of triangle ABC. The intersection area is bounded 

by four edges. (b) Two edges of triangle PQR and three edges of 

triangle ABC intersect; vertex C is in the interior of PQR. The 

intersection area is bounded by five edges. (c) Three edges of 

triangle PQR and three edges of triangle ABC intersect; every vertex 

of one triangle is outside the other triangle. The intersection area is 

bounded by six edges. (d) No edge of triangle PQR intersects any 

edge of triangle ABC; vertices P, Q, R are in the interior of triangle 

ABC. The intersection area is the triangle PQR. 

 

 

boolean triTriInt(tr1 = ABC, tr2 = PQR) 

Input: two triangles ABC and PQR 

Output: Boolean value whether the triangles intersect or 

not. 

Let ABC and PQR be two triangles. The triangles are 

represented with parametric vector equations where u, v are 

parameters for triangle ABC, and s, t are parameters for 

triangle PQR.  

R1(u, v) = A + u U + vV with 0 ≤ u, v, u + v ≤ 1  

R2(s, t) = P + s S + tT with 0 ≤ s, t, s + t ≤ 1   

where  

U = B – A, V = C – A, are directions of the edges at A;  

S = Q – P, T = R – P are the directions of edges at P. 

Let N1 = UxV, N2 = SxT be the normals to planes supporting 

the triangles ABC and PQR.  

if N1xN2 ≠ 0 // planes supporting triangles are not parallel 

 if triTriCrossInt (tr1, tr2) // cross intersect the triangles 

  return true 

 else 

  return false 

elseif N1xN2 = 0, // triangles planes are parallel 

  if AP•N1 = 0, //the triangles are coplanar 

   if triTriParInt (tr1, tr2)// implicit in Section V. 

    return true 

   else 

    return false 

  elseif AP•N1 ≠ 0, // the triangles are not coplanar,  

   no Intersection  

   return false 

  endif 

endif 

/*end of algorithm*/ 

 

Here, we give all the supporting algorithms for 

implementation and classification of all special case 

intersections in the main algorithm. There are three broad 

categories for intersections of triangles: zero dimensional 

(single point), one-dimensional (line segment), and two 

dimensional (area) intersection.  

 

A.1 Single Point Intersection (0D).  

 

We first analyze the vertices of the triangle PQR with 

respect to triangle ABC to determine if a vertex P or Q or R is 

common to the ABC triangle and conversely.  

  

vertex-triangleTest (X, tri = ABC)  

Input: X is a vertex of one triangle and tri another triangle.  

Output: boolean value determining whether X is a vertex, 

edgeInterior, triangleInterior point of the triangle.  

To determine the relation of X {P, Q, R} to the triangle 

ABC, we solve  

A + u U + v V = X for 0 ≤ u, v, u + v ≤ 1, 

Rearranging the equation, we get  

u U + v V = AX . 
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To eliminate one of the parameters u, v to solve this, we dot 

product the equation with vectors (UxV)xU and (UxV)xV. 

Let 

)()(

)(

VUVU

VUAX




  

then u = – •V and v = •U  

if 0 ≤ u, v, u + v ≤ 1,  

 return true // X of PQR, intersects the triangle ABC. 

else  

 return false 

/*end of algorithm*/ 

The vector 
)()(

)(

VUVU

VU



  is computed only once and used 

repeatedly. As a result 
)()(

)(

VUVU

VUAX




  is calculated 

with one cross product, and u, v are calculated with one dot 

product. The parameters u, v naturally lend themselves to 

classification of intersections. Similarly, 
)()(

)(

TSTS

TSPX




 . 

A.2 Classification of Intersection.  

 

In order to determine whether the vertex X of triangle PQR 

is a vertex of ABC, or on the edge of ABC, or an interior 

point of triangle ABC, no extra computational effort is 

required now. Logical tests are sufficient to establish the 

classification of this intersection. Since 0 ≤ u, v, u + v ≤ 1, we 

can classify X relative to ABC in terms of the following 

predicates: 

vertex ((u, v)): If (u, v)  { (0, 0), (0, 1), (1, 0)}, then X is 

one of the vertices of ABC. 

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u < 

1) or (u + v = 1, 0 < u < 1)), then X is on an edge of ABC, 

excluding vertices.  

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 < 

u + v < 1), X is an interior point (excluding boundary) of the 

triangle ABC. 

Similarly, as above we can classify vertex X of triangle 

ABC as vertex, edgeInterior, or triangleInterior point of 

triangle PQR. Single point intersection may result from cross 

intersection of edges as well. An edge point may be a vertex 

or an interior point of the edge.  

 

A.3 The Edge-edge Single Point Intersection.  

 

If two triangles cross intersect across an edge, the edge-to-

edge intersection results in a single point. The edge-edge cross 

intersection algorithm is presented below. 

 

edge_edgeCrossIntersection (edge1, edge2) 

Let the two edges be AB and PQ. Then the edges are 

represented with equations 

 X = A + u U with U = B – A, 0 ≤ u ≤ 1 

 X = P + s S with S = Q – P, 0 ≤ s ≤ 1 

if U×S•AP≠0, return false // non-coplanar lines  

elseif U×S = 0, return false // lines are parallel 

else U×S ≠0, // lines cross 

/* solve for uP, sA values for the intersection point*/ 

 A + uP U = P + sA S 

uP = S•PA×(U×S)/(U×S•U×S) 

 
)()(

)(

SUSU

SUPAS
u
P




  

if (uP < 0) or (uP > 1), return false // no cross intersection,  

 
)()(

)(

SUSU

SUAPU
s
A






 

if (sA < 0) or (sA > 1),  

 return false //no cross intersection,  

else  

 return true //there is edge-edge cross intersection. 

endif 

/* end of algorithm*/ 

 

A.4 Composite Classification Of Single Point Intersection.  

 

Let Am, Pm, be the pair of bilinear parametric coordinates of 

the 3D intersection points R1(um,vm) and R2(sm,tm) with 

respect to triangles ABC and PQR respectively. When there is 

no confusion, we will refer to the points as Am and Pm instead 

of 3D points R1(um,vm) and R2(sm,tm). From vertex-triangle 

intersection (Section 3) we have  

Pm is a vertex of PQR, and Am = (um, vm), where um and vm 

are um = –•V, vm = •U or Am is a vertex of ABC, and Pm = 

(sm, tm), where sm and tm) are sm = –'•T, tm = '•S. 

From edge-edge intersection (Section B.3) we have  

Am = (0, uP) or (uP, 0) or (uP, 1 – uP) or (1 – uP, uP) 

Pm = (0, sA) or (sA, 0) or (sA, 1 – sA) or (1 – sA, sA) 

If (uP = 0 or 1) and (sA = 0 or 1), it is vertex-vertex 

intersection. If (uP = 0 or 1) and not (sA = 0 or 1), it is vertex-

edgeInterior intersection. If not (uP = 0 or 1) and (sA = 0 or 1), 

it is edgeInterior-vertex intersection. If not (uP = 0 or 1) and 

not (sA = 0 or 1), it is edgeInterior-edgeInterior intersection. 

This completes the discussion of single point intersection 

classification and parameters for the corresponding 3D points.  

B. Line Intersection (1D) 

Besides edge-edge cross intersection, the edge-edge 

collinear intersection is a possibility, independent of crossing 
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or coplanar triangles. In this section, we discuss algorithms 

that result in a segment (1D) intersection; see Fig. 3.  

 

B.1 Intersection Algorithm And Parametric Coordinates.  

 

Here we derive an edge-edgeCollinear intersection 

algorithm. This algorithm is seamlessly applicable to both 

cross-intersecting and coplanar triangles. The following 

algorithm implements intersection of edges of the triangles 

ABC and PQR. 

 

boolean edge-edgeCollinearTest (edge1, edge2) 

input: two line segments 

output: true if the segments have a common intersection, 

else false. First we compute the linear parameter coordinates 

uP, uQ, sA, sB for intersection of X = A + u (B – A), for X = P, 

Q and X = P + s (Q – P), for X = A, B. Similarly, we can 

compute the intersection of other edges of triangle ABC with 

any edge of triangle PQR. Then we update the parameters for 

the common segment. This algorithm is standard, 

straightforward and is omitted for the sake of limited space. 

 

B.2 Classification of Edge-edge Intersection  

 

Now we have the linear coordinates for intersection points 

uP, uQ and sA, sB. We map the linear parameters for 

intersection points to bilinear parameter coordinates (u, v) and 

(s, t). If uP, uQ are known along an edge and the edge is AB, 

let um = uP, uM = uQ, vm = 0, vM = 0;  

Similarly for AC, let vm = uP, vM = uQ, um = 0, uM = 0; and 

for BC, let um = uP, uM = uQ, vm = 1 – uP, vM = 1 – uQ;  

Thus ABC triangle bilinear coordinates for the intersection 

points are:  

Am=(um, vm), AM=(uM, vM) 

where vm = vM = 0 or um=uM =0 or um+vm=uM + vM = 1. 

Similarly for the triangle PQR, the linear coordinates sA, sB 

of intersection translate into bilinear coordinates 

Pm = (sm, tm), PM = (sM, tM)  

where tm = tM = 0 or sm = sM = 0 or sm+tm = sM+tM = 1. 

Now we have the bilinear parametric coordinates u, v, s, t 

for the intersection segment. The common 3D segment is 

denoted by [R1(Am), R1(AM)] which is [R2(Pm), R2(PM)] or 

[R2(PM), R2(Pm)]. It is possible that the intersection segment is 

equal to both edges, or it overlaps both edges, or it is entirely 

contained in one edge. Since the intersection is a part of the 

edges, it cannot properly contain any edge.  

 

B.3. Composite Classification of Line Intersection.  

 

For collinear edge intersection Am, AM are normally distinct 

and similarly Pm, PM may be distinct. Though the intersection 

segment is given by [R1(Am), R1(AM)] = [R2(Pm), R2(PM)) or 

[R1(Am), R1(AM)] = [R2(Pm), R2(PM)], it is not necessary that 

parameter coordinates [Am, AM] = [Pm, PM] or [Am, AM] = [PM, 

Pm]. The predicate for edge-edge collinear intersection 

segment becomes: 

edge-edgeCollinear (edge1, edge2) = edge ([Am, AM]) and 

edge ([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or 

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)] 

Also it may be noted that for a cross intersection triangle, an 

edge-triangleInterior intersection may result in a segment 

intersection (Fig. 3(b)). For cross intersecting planes we have 

(cf. 3.A for vertex to triangle intersection and [7]) . 

edge-triangle (edge, triangle) = edge ([Am, AM]) and triangle 

([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or 

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)] 

This completes the discussion of segment intersection (1D), 

classification, 3D points for both cross and coplanar triangle 

intersections.  
 

V. AREA INTERSECTION 
 

For coplanar triangles, there may be no intersection (Fig. 1), 

a single point (Fig. 2(a, b)), a segment (Fig. 3(a)) or an area 

(Fig. 4, Fig. 5(a, b, c)), including one triangle contained in 

another, (Fig. 5(d)). An area can result from two edges of one 

triangle and one, two, or three edges of another triangle, or 

three edges from both triangles creating a star shaped figure. 

The resulting area is bounded by 3, 4, 5, or 6 edges. All other 

configurations are homeomorphic to the figures presented in 

this paper. For qualitative spatial reasoning, in some cases 

(when the knowledge of cross intersection is insufficient), we 

resort to coplanar intersection to distinguish the externally or 

tangentially connected objects.  

 

A. General Purpose Algorithm 
 

If a vertex of PQR is in the interior of ABC (or the converse 

is true), then an area intersection occurs, (Fig. 4(a, b), Fig. 5(a, 

b, d)). If no two edges intersect and vertex_triangleInterior 

(vertex, triangle = tr2) for every vertex of a triangle tr1, then 

the triangle tr1 is contained in tr2 and conversely. If no edge-

edge intersection takes place and no vertex of one triangle is 

inside the other triangle (or the converse is true), then they are 

disjoint.     

Although this algorithm may look simple, it is a new 

approach compared to previous approaches cited in the 

background section. The existing methods may use alternate 

edge-oriented techniques to determine the area of intersection; 

however, those will be limited [11]. Our algorithm is more 

comprehensive and analytically rigorous; it is implicitly 

capable of handling any specific type of intersection 

simultaneously, which may be a single point, a segment or an 

area.  
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THE ALGORITHM: A NOVEL APPROACH 

 

boolean triTriIntersection (tr1 = ABC, tr2 = PQR) 

The triangles ABC and PQR are  

X = A + u U + v V with U = B – A, V = C – A, 0 ≤ u, v, u + v 

≤ 1 

X = P + s S + t T with S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1 

The general set up for detecting intersections is to solve the 

equation 

A + u U + v V = P + s S + t T  

for u, v, s, t. If a solution exists satisfying the constraints 0 ≤ 

u, v, u + v, s, t, s + t ≤ 1, then there is an intersection, else 

there is no intersection.  

Rearranging the equation, we have  

 u U + v V = AP + s S + t T (1) 

For simplicity in solving (1), we use the following notation.  

Let , ,  be vectors and  be a positive real number. Then 

for triangle ABC, let AP = P – A be a vector,  = 

(U×V)•(U×V),  
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Similarly, let ', ', ' be vectors and d' be a positive real 

number. Then for triangle PQR, let 

 PA = A – P be a vector, ' = (S×T)•(S×T)  
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For intersection between triangles ABC and PQR, on 

dotting equation (1) with (U×V)×U and (U×V)×V, we quickly 

get  

u = – (•V + s •V + t •V) 

v = •U + s •U + t •U 

Adding the two equations,  

u + v = • (U – V) + s • (U – V) + t •(U – V) 

In order that 0 ≤ u, v, u + v ≤ 1, we get the following 

inequalities for possible range of values for s and t 

 

 (a)  – •U ≤ •U s + •U t ≤ 1 – •U 

 (b)   – 1 – •V ≤ •V s + •V t ≤ – •V 

 (c)  – • (U – V) ≤ •(U – V) s + •(U – V) t ≤ 1 – •(U – V) 

 

These linear inequalities (a) – (c) are of the form 

m ≤ ax + by ≤ n 

The solution to this system of inequalities is derived at the 

end of this section. We apply the results of the algorithms here 

in solving (a) – (c). 

If we solve_x (– •U, •U, •U, 1 – •U, – •V, •V, •V, 

1 – •V, xm, xM) 

 sm = max (0, xm), sM = min (1, xM) 

If we solve_x (– •U, •U, •U, 1 – •U, – •(U – V), • (U 

– V), •(U – V), 1 – •(U – V), xm, xM) 

 sm = max (sm, xm), sM = min (xM, sM) 

If we solve_x (– 1 – •V, •V, •V, – •V, – •(U – V), 

•(U – V), •(U – V), 1 – •(U – V), xm, xM) 

 sm = max (sm, xm), sM = min (xM, sM) 

if sm > sM 

 return false 

else  

 tM = 0; tm = 1 

 for s[sm, sM] // we solve the inequalities for t  

  if solve_y (– •U, •U, •U, 1 – •U, – •V, •V, 

•V, 1 – •V, s, ym, yM) 

   tm (s) = max (0, ym), tM (s) = min (1, yM),  

   tm = min (tm (s), tm), tM = max (tM (s), tM) // extent of 

overall t values  

   if tm (s) > tM (s)  

    Return false 

   else  

    tm (s) ≤ t ≤ tM (s) 

    return true 

/* end of algorithm */ 

 

We first solved the three inequalities pairwise for a range of 

values for s, so that sm ≤ s ≤ sM holds good simultaneously 

with three inequalities. Then from this range of s values, we 

solved for t as a function of s such that tm (s) ≤ s ≤ tM (s), and 

overall tm ≤ tM. If it succeeds, it ensures that there is a 

solution. Similarly, we determine for u-parameter and v-

parameter values in terms of u to obtain the area enclosed by 

the two triangles. This algorithm detects whether coplanar 

triangles intersect, and we classify the intersection as in 

Section V.B. Here we describe the two algorithms we applied 

in the general-purpose algorithm. An auxiliary algorithm 

solves inequalities of the form 

 m ≤ ax + by ≤ n, and  

 M ≤ Ax + By ≤ N 

The brute force method for solving these inequalities may 

lead to an erroneous solution as shown in the following 

example. The general elimination of variables principle that 

works well for equations does not directly translate into 

solving inequalities. Such approach gives an inconsistent 

solution to the two inequalities 
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  (a) – 1 ≤ x + y ≤ 1 and   

 (b) – 1 ≤ x – y ≤ 1 

Since – 1 ≤ x – y ≤ 1 is equivalent to – 1 ≤ – x + y ≤ 1, 

adding and subtracting the two inequalities (a) and (b), yields 

an inaccurate answer –1 ≤ x ≤ 1, and – 1 ≤ y ≤ 1 which is the 

area enclosed by dotted boundary in Fig. 6. But the accurate 

solution is in the shaded area in Fig. 6, which is |x| ≤ 1, and |y| 

≤ (1 – |x|).  

Thus to accurately solve these two inequalities – 1 ≤ x + y ≤ 

1 and – 1 ≤ x – y ≤ 1, we first solve these for one variable x, 

then use this variable value to solve for the other variable y as 

– (1 – |x|) ≤ y ≤ (1 – |x|).  

First, we solve two most general inequalities  

 m ≤ ax + by ≤ n   (1) 

 M ≤ Ax + By ≤ N  (2) 

The following algorithm determines xm, xM such that for 

each x in [xm, xM], the inequalities hold. 

 

 
 

Fig. 6. Solution to a pair of inequalities: – 1 ≤ x + y ≤ 1 and – 1 ≤ 

x – y ≤ 1. Using brute force method of elimination of variables yields 

the area enclosed by the dotted boundary, but the accurate solution is 

enclosed by the shaded area. 

 

boolean solve_x (m, a, b, n, M, A, B, N, xm, xM) 

If a solution is found, it returns true, else it returns false. 

First assume b and B are non-negative. If not, multiply them 

by –1 to make them non-negative. Multiplying (1) by B and 

(2) by b, subtraction leads to 

(mB –Mb) ≤ (aB – Ab)x ≤ (nB – Nb), 

which yields the range [xm, xM] for x values in addition to true 

or false value for the algorithm. 

Now once xm, xM have been determined, for each x in [xm, 

xM] in the inequalities, we determine the range [ym(x), yM(x)] 

for y. That is, after the range [xm, xM] is determined, only then 

for each x in [xm, xM], the range for y is determined; in other 

words, y is a function of x. 

 

boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM) 

Given that xm ≤ x ≤ xM are known, it solves the inequalities 

for ym, yM . In the process, it may update the values of xm, xM 

as needed. 

If a solution is found, it returns true else it returns false. 

Now for xm ≤ x ≤ xM, the inequalities become 

 m –ax ≤ by ≤ n – ax and   

 M – Ax ≤ By ≤ N – Ax. 

These inequalities give the range [ym(x), yM(x)] of values 

for y as function of x.   

This completes the general-purpose algorithm discussion 

for determining the triangle-triangle intersection algorithm 

completely.  

 B. Composite classification for area intersection 

In this section, we summarize the algorithms in Section 

V.A. The equations of the triangles ABC and PQR are 

 

R1(u, v) = A + u U + v V,  

 where U = B – A, V = C – A, 0 ≤ u, v, u + v ≤ 1 

R2(s, t) = P + s S + t T,  

 where S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1 

 

These equations are independent of whether they are 

supported by crossing planes or coplanar planes. The cross-

intersecting triangles discussion is well researched, see 

Section II. Here we consider the general case, including 

crossing or coplanar triangles. In this case, the intersection 

may be an area in addition to a possible single point and a line 

segment. We first determined [sm, sM] the range of s values, 

then used the range on s to solve for [tm(s), tM(s)], the range of 

t. If such a solution exists, it is ensured that the two triangles 

intersect, which is sufficient for some qualitative spatial 

reasoning applications. The uv values can be similarly derived 

for the triangle ABC (e.g., first um, uM then vm(u), vM(u)). This 

algorithm may be used with any application (e.g., qualitative 

spatial reasoning, surface modeling, image processing etc.).  

As described in Section III, an intersection can arise from 

crossing or coplanar triangles. For example, vertex-vertex or 

edge-edge intersection can occur regardless of triangles being 

coplanar or crossing. The algorithm determines whether 

intersection exists or not (i.e., it returns true or false). If true, 

the parameter coordinates of intersection are readily available. 

We can derive all the auxiliary information from the 

parametric coordinates; only logical tests are sufficient for 

classification of the intersections. It is not the intent of this 

algorithm to determine whether the triangles are crossing or 

coplanar. 

This can be quickly determined as follows: if U×V•S×T ≠0, 

then triangles cross, else triangle planes are parallel. If 

AP•U×V = 0 or AP•S×T = 0, then the triangles are coplanar. 

The bilinear parameter coordinates are denoted by Am = (um, 

vm), AM = (uM, vM), Pm = (sm, tm), PM = (sM, tM). The 

intersection points can be differentiated as follows.  
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If the algorithm returns false,  

 No Intersection 

Elseif (Am = AM) or (Pm = PM)  

 Single Point Intersection 

Elseif (sm = sM or tm = tM or um = uM or vm = vM) 

 Line segment intersection common to two triangles 

Else 

 Area Intersection common to two triangles. 

This will implicitly cover the case when a triangle is inside 

the other triangle as well. If triangles do not intersect, then the 

triangles are declared disjoint. This completes the discussion 

of overall intersection between triangles.  

VI. APPLICATION TO QUALITATIVE 

SPATIAL REASONING  

Qualitative Spatial Reasoning relies on intersections 

between objects whose boundaries are triangulated. The 

spatial relations are determined by the 9-Intersection/4-

Intersection model [9, 10]. That is, for any pair of objects A 

and B, the interior-interior intersection predicate, IntInt(A, B), 

has true or false value depending on whether the interior of A 

and the interior of B intersect without regard to precise 

intersection. Similarly IntBnd(A, B) represents the truth value 

for the intersection of the interior of A and the boundary of B, 

and BndBnd(A, B) represents the predicate for the 

intersection of the boundaries of A and B. These four 

qualitative spatial reasoning predicates are sufficient to define 

the RCC8 spatial relations (see Table 1). 

In the application VRCC-3D+, the boundary of an object is 

already triangulated; that is, we will need to intersect pairs of 

only triangles. To reduce the computational complexity, the 

algorithm uses axis aligned bounding boxes (AABB) to 

determine the closest triangles that may possibly intersect. For 

example, for objects A and B, if bounding boxes for triangles 

of A are disjoint from bounding boxes for triangles of B, 

either A is contained in B (IntInt, BndInt is true) or B is 

contained in A (IntInt, IntBnd is true) or A is disjoint from B. 

The test for such containment of objects can be designed by 

casting an infinite ray through the centroid of A. If the ray 

intersects B an odd number of times, then B is contained in A. 

Similarly, the test can be made if A is contained in B. If A is 

not contained in B and B is not contained in A, then A and B 

are disjoint (i.e., IntInt(A, B), IntBnd(A, B), BndInt(A, B), 

and BndBnd(A, B) are all false).  

If the triangles cross intersect (e.g., triangleInterior–

triangleInterior is true), then IntInt, IntBnd, BndInt, BndBnd 

will be true. However if the triangles are coplanar and 

intersect, only BndBnd(A, B) is true and IntInt(A, B), 

IntBnd(A, B), BndInt(A, B) are false for the objects; 

otherwise, BndBnd(A, B) is also false.  

It is possible that two triangles cross intersect in a line 

segment even when a triangle is on one side of the other 

triangle, so edgeInterior–triangleInterior is true. In that case, 

it may be desirable to know which side of the other triangle is 

occupied. In Fig. 3(b), the triangle PQR is on the positive side 

of triangle ABC. For example, if triangle1 of object A cross 

intersects the negative side of triangle2 of object B, then 

BndInt(A, B) is true. 

Table 2 enumerates the outcome for triangle-triangle 

intersection with respect to 3D objects. This is a 

characterization of the intersection predicates, which 

subsequently can be used to resolve the eight RCC8 relations. 

Here we assume all normals are oriented towards the outside 

of the object. Each characterization in Table 2 describes when 

the associated predicate is true. If the truth test fails, then 

other triangles need to be tested. If no pair of triangles results 

in a true value, then the result is false.  

TABLE I. 

RCC8 RELATIONS AND INTERSECTION PREDICATES, 

ONLY SHADED ENTRIES ARE NECESSARY.  

 

TABLE II. 

CHARACTERIZATION OF INTERSECTION PREDICATES 

 

This characterizes the intersection predicates, which help in 

resolving the RCC8 relations. 

VII. CONCLUSION 

For the 9-Intersection model used in qualitative spatial 

reasoning, triangle-triangle intersection plays a prominent 

role. Herein we presented a complete framework for 

determining and characterizing the intersection of geometric 

objects. In contrast to other algorithms, our approach is a 

general technique to detect any type of intersection. It creates 

classifications by applying logical tests rather than 

computational arithmetic tests. 

Thus, our algorithm not only detects whether or not an 

intersection exists, but also classifies intersections as a single 
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point, a line segment, or an area. The algorithm provides more 

information than required by spatial reasoning systems. 

Consequently, we hope the new ideas and additional 

information including classification of 3D intersection 

presented herein will be useful in other related applications. 
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