
 

AbstractBrain-computer interfaces based on motor 

imagination use the intention of movement to communicate with 

some external device, generally, the signals are acquired, 

processed, classified, and converted into control commands. 

However, one of the challenges to establishing interfaces in real-

time is the reduction of the dimension of the data, since this 

increases the delay that exists between the intention of movement 

and the execution of the action in the device to be controlled. To 

reduce the delay, this study presents an analysis using typical 

testors, which are a tool that helps to find patterns in the 

electroencephalographic signals of motor imagination and thus 

helps to select the acquisition channels that provide the greatest 

amount of information. A subject participated in the study, from 

whom signals of two motor imagination thoughts were acquired, 

after the analysis of testors, the signals were classified with a 

recurrent neural network, and the result obtained was 

97% accuracy. 

Index Terms Brain-computer interface (BCI), typical testors, 

electroencephalogram, motor imagery, LSTM. 

I. INTRODUCTION 

Brain-computer interfaces (BCI) use brain signals to 

communicate with an external device, which can be focused on 

neurorehabilitation and control. A BCI system involves the 

stage of signal acquisition, processing, and classification and 

finally, an application is assigned, Figure 1 shows this process. 

Recent studies have focused on the development of BCIs to 

help people with motor disabilities and improve their quality of 

life [1]. 

BCIs are classified into invasive and noninvasive systems 

according to the technique of brain information acquisition. 

One of the most commonly used noninvasive techniques is 

electroencephalography (EEG). Electroencephalography 

records the electrical activity generated by billions of brain 

neurons; the signals are recorded as temporal waves [2]. 

These signals can be classified according to the location of 

the acquisition channel, according to the international 10-20 

system, morphology, amplitude, and frequency. The latter is 

studied through frequency bands which are delta (0.5 to 4Hz), 

theta (4 to 7Hz), alpha (8 to 12 Hz), and beta (13 to 30 Hz) [4]. 

Brain signals can be evoked or induced, the former is 

generated by external stimuli, the latter by the individual's 

intention to move. Recent studies have reported the technique 
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of motor imagination (MI), MI is an induced mental process, 

which consists of imagining some physical movement of a 

limb; through this process, sensorimotor modulations (SMR) 

are generated, which are divided into event-related 

synchronization (ERS) and event-related desynchronization 

(ERD), through ERS/ERD the signal is attenuated and 

generates an intention which is translated into control 

commands within the BCI's [5]. 

Currently, there are electroencephalogram devices with dry 

electrodes; these devices are portable and easy to place, which 

has benefited the development of brain-computer interfaces.  

For BCI development, is important to acquire information 

from the different regions of the cerebral cortex, therefore 

devices with the largest number of sensors are generally sought, 

however, the robustness of the processing and classification 

algorithm is inversely proportional to the amount of 

information. Thus, reducing the dimensionality of the data is 

important, mainly for real-time BCI performance. 

Therefore, this research has two main objectives which are: 

1) Decrease the dimensionality of the data for future 

implementation in a real-time BCI. 

2) Find which sensors and brain regions provide the most 

information to the BCI through MI thinking. 

To this end, in this research we propose to perform an 

analysis of the EEG channels of the low-cost OpenBCI device 

that has eight sensors, using the method of typical testers, which 

is a method of combinatorial logic that enables eliminating 

identify the channels that give us more information in the 

classification of the data, this information is important because 

with it we can make decisions about the number of minimum 

sensors needed to reduce the dimensionality of the data, also 

allows us to identify the most active brain regions in the MI. 

Subsequently, we propose to classify the signals with a 

recurrent neural network model using the data obtained through 

the typical testers, for this experiment we used EEG signals 

from two types of thoughts of a subject. 

The main contribution to the state of the art with this 

experiment is to demonstrate that the typical testor method can 

help to optimize brain-computer interfaces through the 

selection of the acquisition channels of a low-cost device. 

Section two presents the work related to the selection of EEG 

signal acquisition channels, discusses typical testors, and 

explains LSTM neural networks, section three shows the 
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methods and materials used in the experiment, section four 

shows the results, and finally, section five discusses 

conclusions and future work. 

II. BACKGROUND 

MI signals are widely used in the development of BCIs, 

efficient selection of acquisition channels would help to 

optimize BCI interfaces.  Recent studies have focused on the 

analysis of EEG channel selection for data dimensionality 

reduction of MI signals.  Baig et. al [6] classify channel 

selection algorithms into three main types: filtering techniques, 

wrapper methods, and hybrid methods. In filtering techniques, 

we find correlation criteria such as Pearson's coefficient, mutual 

information, and algorithms such as Chi-square, as well as 

statistical techniques based on location, variance, redundancy, 

and relevance. Wrapper techniques use the objective function 

to evaluate the subset, usually using sequential selection 

algorithms and heuristic search algorithms. Hybrid techniques 

use a combination of filtering and wrapping techniques to 

obtain the advantages of both, that is, the accuracy of filtering 

and the adaptability of wrapping techniques. 

Within the above classification studies such as that of Gaur 

et al. [7] who achieved a 65% reduction of acquisition channels 

by common spatial pattern (CSP). Liu et al. [8] used the genetic 

algorithm to find combinations of EEG channels and maximize 

classification accuracy. In [9], the selection of EEG channels is 

performed using hybrid optimization techniques based on the 

binary flower-pollination algorithm (FPA) and beta hill 

climbing. Hussien et al. [10] propose the modified gray wolf 

optimization algorithm for channel selection from the BCI 

Competition IV database.  

On the other hand, in the study by Park and Chung [11], who 

used common spatial patterns (CSP) for channel selection in 

conjunction with the Fisher score, in this study the BCI 

competition III dataset 2a database was used, and an average 

accuracy of 88.62% was obtained. 
In addition, channel selection techniques considered 

embedded techniques have also been proposed, such as the case 

of Zhang et al. [12], who proposed an approach based on deep 

learning, they used the squeeze-and-excitation module for 

channel selection, in addition to a convolutional neural network 

for the classification of left and right-handed MI, they obtained 

an average accuracy of 87%. Furthermore, the study of Jin et al. 

[13], used bispectrum analysis for nonlinear and non-Gaussian 

signals for the classification of tree databases, including BCI 

competition IV dataset 1, in which they obtained an accuracy 

of 83%. 

Another interesting study is by Varsehi and Firoozabadi [14], 

where they used Granger causality (GC) in conjunction with a 

machine learning approach for the physionet MI database, 

resulting in an accuracy of 93%.  One of the best results found 

in the literature was the study by Gurve et. al [15] who used 

non-negative matrix factorization, in addition to neighborhood 

component analysis for the selection of subject-specific 

characteristics, where they analyzed 10 healthy subjects and 

obtained an accuracy of 96%. 

Our method is based on pattern recognition, which is a 

technique that takes characteristics directly from the data 

independently of the classifier. In the following, we will explain 

the typical testor method and the classification algorithm. 

A. Typical Testor 

A typical testor is a concept belonging to the combinatorial 

logic approach within pattern recognition. The typical testor is 

the minimum set of features that allows to discriminate of 

objects belonging to different classes, these are searched among 

all possible subsets of columns of features [16,17]. 

Let 𝑈 be a set of objects of 𝑁 characteristics grouped into 𝐶 

classes. By comparing the features of each object with those of 

objects belonging to different class in the form of pairs, we 

obtain the difference matrix 𝐷𝑀 =  [𝑚𝑖𝑗] [𝑚𝑖𝑗] 𝐿𝑥𝑁 where 𝑚𝑖𝑗 ∈

 0, 1 and 𝐿 is the number of pairs, 𝑖 the number of objects, 𝑗 the 

feature. For 𝑚𝑖𝑗  =  1 the stated equality criterion is not 

satisfied, whereas for 𝑚𝑖𝑗  =  0 the equality criterion is satisfied 

for 𝑗. 

Considering that 𝐼 =  {𝑖1, . . . , 𝑖𝑗} is the set of rows, 𝐽 =

 {𝑗1, . . . , 𝑗𝑛} the set of features.  

𝑇 ⊆  𝐽 where 𝑇 is a 𝐷𝑀 testor if they meet the following 

definitions: 

1. a set 𝑇 =  {𝑗𝑘1, . . . , 𝑗𝑘𝑙}  ⊆  𝐽 is an 𝐷𝑀 testor if there is no 

row of zeros. 

2. The characteristic 𝑗𝑘𝑟  ∈  𝑇 is typical with respect to 𝑇 and 

𝐷𝑀 if ∃𝑞, where 𝑞 ∈  {1, . . . , 𝐿} such that 𝑎𝑖𝑞𝑗𝑞𝑟
 =

 1 𝑓𝑜𝑟 𝑆 >   𝑎𝑖𝑞𝑗𝑘𝑝
 =  0 ∀𝑝 𝑓𝑜𝑟 𝑝 ∈ {1, … , 𝑆} 𝑝 ≠  𝑟. 

3. A set T has the typicality property with respect to a basic 

matrix 𝐵𝑀 if all the characteristics in 𝑇 are typical with 

respect to 𝑇 and 𝐷𝑀. 

Only if an identity matrix can be obtained in the testor matrix 

𝑇𝑀, by eliminating and interchanging some rows. 

 

Fig. 1. Process of a brain-computer interface, which includes performing the 
mental task, acquiring the signals, processing and classifying the signals, and 

finally giving it an application [3] 

 

Fig. 2. LSTM recurrent neural network [18] 
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B. LSTM 

Recurrent neural networks (RRN), are neural networks 

designed to process sequential data, one of the most used neural 

networks in recent studies is the long short-term memory 

(LSTM). The LSTM processes sequential data through gates, 

uses the input signal and converts it into four variables, which 

pass through three gates and a hyperbolic tangent. Figure 2 

shows the LSTM diagram. 

The output of the network depends on the data input and, in 

turn, on the weights and parameters of the previous output 

during model training [18]. The LSTM is given by 

equations 1,2,3,4,5: 

𝑓𝑡  =  𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1  + 𝑊𝑐𝑓  𝑐𝑡−1 +  𝑏𝑓), (1) 

𝑖𝑡  =  𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1  + 𝑊𝑐𝑖  𝑐𝑡−1  +  𝑏𝑖), (2) 

𝑐𝑡  =  𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑖), (3) 

𝑜𝑡  =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1  + 𝑊𝑐𝑜 𝑐𝑡  +  𝑏0𝑜), (4) 

ℎ𝑡  =  𝑜𝑡 𝑡𝑎𝑛ℎ(𝑐𝑡), (5) 

where 𝜎 is the sigmoid logistic function, 𝑊𝑡 is the weight 

obtained during training 𝑥𝑡 is the input, 𝑓𝑡 is the forgetting gate, 

𝑖𝑡 is the input gate, 𝑐𝑡 is the update cell, 𝑜𝑡 is the output gate, 

and ℎ𝑡   is the output. 

III. METHODS AND MATERIALS 

The methodology and materials used in the experiment are 

shown below, the brain signals were acquired, and processed, 

using the testors technique the channels that provide the most 

relevant information were determined, and finally using the 

channels of the testers result were classified with RRN. Figure 

3 shows the methodology used. 

A. Electroencephalogram Signal Acquisition 

One 30-year-old subject participated in this study, who are 

right-handed, sleep between 6 and 8 hours a day, consume a cup 

of coffee a day, exercise 3 to 5 days a week, do not smoke, do 

not consume alcohol, and have no diagnosed mental illness or 

neurological disorder. 

A low-cost EEG device called OpenBCI with the Cython 

acquisition card with 250Hz sampling rate was used for 

acquisition. The device is shown in Figure 4, it has 8 acquisition 

channels, which are composed of dry electrodes. Channels FP1, 

FP2, C3, C4, CP5, CP8, P3, P4 were used for this experiment, 

according to the international electrode placement 

system 10 20. 

The signals were acquired with ambient lighting conditions 

between 100 and 200 luxes, noise between 30 and 40 decibels, 

 

Fig. 3. Methodology used to determine the acquisition channels that provide the most information for the classification of brain signals 

 

Fig. 4. OpenBCI device, 1: Physical dry sensor device. 2: device configuration for the acquisition of EEG signals [19] 
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temperature between 18 and 26 degrees Celsius and ventilation 

generated by air conditioning units. 

A total of 30 recordings were made during two sessions. At 

the beginning, the subject was requested to relax for 5 minutes 

to lower the heart rate. The mental tasks were the imagination 

of the movement of opening and closing the left hand (left hand 

MI), imagination of the movement of opening and closing the 

right hand (right hand MI). The acquisition time per recording 

was 1 minute 40 seconds of which 80 seconds are to perform 

the mental tasks and the remaining 20 seconds are due to the 

duration of the audio of the interface created to give instructions 

to the subject for each mental activity. 

Before starting, the subject was instructed to sit in a 

comfortable position with arms relaxed and hands on the 

quadriceps, and was asked to close his eyes and avoid blinking. 

During the acquisition, the first 10 seconds of preparation were 

used where the subject prepares mentally and physically to 

perform the metal tasks, followed by 10 seconds of MI right 

hand, 10 seconds rest in which the subject stops thinking about 

something specific, 10 seconds of MI left hand, 10 seconds rest, 

10 seconds of MI right hand, 10 seconds rest and finally 10 

seconds of MI left hand. 

B. Preprocessing 

During preprocessing, the signals were converted from .txt 

files to .csv files. These signals were segmented into arrays of 

[2000,8] per class, which is equivalent to 8 seconds per task 

from which 60 signals per class were obtained, a total of 120. 

Figure 5 shows a printout of a right-hand MI and left-hand MI 

signal taken during the same recording. 

C. Processing 

Once the segments were obtained for each mental task, the 

signals were transferred from the time domain to the frequency 

domain using the Fast Fourier Transform (FFT), which is an 

implementation of the Discrete Fourier Transform (DFT) and 

in our case converts the signals into N components from 0 to 

250HZ using equation 6, where 𝑥𝑛 is the periodic signal: 

𝑥𝑘  = ∑ 𝑥𝑛𝑒
(−

2𝜋
𝑁

)𝑘𝑛
, 𝑘 = 0, …

𝑁−1

𝑛=0

, 𝑁 − 1. (6) 

Subsequently, the variance of the FFT components was 

calculated. For which an array of dimensions [8,120] was 

obtained, that is 120 signals and one feature per channel for 

each class. 

Once the signal characteristics were obtained, in order to 

manipulate and compare the characteristics more easily the data 

were discretized, at this stage, the data were sorted and divided 

into ten segments using the classical K-means algorithm, this 

method consists of grouping the data set into k subsets from its 

mean value. 

D. Channel Selection Using the Typical Testor Method 

From the discretized matrix, the learning matrix 𝐿𝑀 of 120 

rows and 8 columns is established, which belong to the signals 

and characteristics per channel respectively, the objects of class 

1 (left hand MI) are compared with respect to class 2 (right hand 

MI) using the strict equality criterion, where 0 represents 

equality and 1 represents the difference between each 

comparison. From this, an 𝐷𝑀 of 3,136 rows and 8 columns 

was obtained. Subsequently, all redundancy was eliminated, 

obtaining the 𝐵𝑀  of testors of dimension [3,8] in array 7 the 

𝐵𝑀 is shown: 

𝐵𝑀 =
0
0
1

  
0
0
1

  
0
1
0

  
0
0
0

  
0
0
0

  
0
0
0

  
1
0
0

  
0
0
1

  . (7) 

On the other hand, the power set 𝑃𝑆 is generated, which 

shows all the subsets of the two classes 𝐶 =  {0, 1}, raised to 

the power 𝑁, where 0 is the left-hand MI class, 1 is the right-

hand MI class and 𝑁 is the number of characteristics as seen in 

equation 8: 

𝑃𝑆 =  𝐶𝑁 = 2^8 = 256 ×  8. (8) 

The 𝐵𝑀 is multiplied by 𝑃𝑆 generating an array of typical 

testors from [56, 8]. Finally reducing all redundancy, we 

obtained a single typical testor which is observed in array 9: 

𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑡𝑒𝑠𝑡𝑜𝑟 =
𝐶1 𝐶2
0 0

   
𝐶3 𝐶4
1 0

   
𝐶5 𝐶6
0 0

   
𝐶7 𝐶8
1 1

 .  (9) 

E. Classification of the Selected Channels with the Typical 

Testor Method. 

A hybrid neural network CNN-1D and LSTM with 70 

neurons was used for the classification, the model can be seen 

in Figure 6. The training was performed using the data 

containing the variance characteristics of the FFT, for which the 

most relevant channels resulting from the typical tester were 

used. These channels are channel 3, channel 7 and channel 8, 

which correspond to channel C3, C7 and C8. 

The data set was divided for training and validation, 70% of 

the data was used for training, the remaining 30% was used only 

 

Fig. 5. Plot of the signals from the same recording. 1: MI right-hand thought signal. 2: Left hand MI thought signal 
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for validation, that is, the algorithm did not know these data 

during training. Table 1 shows the hyperparameters used 

for training. 

IV. RESULTS 

Table 2 shows the informational weight of the acquisition 

channels of the EEG signals acquired with mental tasks of 

imagining opening and closing the left hand and opening and 

closing the right hand. The table shows that according to the 

results obtained by the method of analysis by typical testors, the 

combination of channels C3, P3 and P4 has an informational 

weight of 100%, which means that the information from sensors 

C3, C7, C8 is relevant to distinguish between the two 

mental  tasks. 

Figure 7 shows in the blue areas of the location of the 

acquisition channels selected by the typical testors, as 

mentioned above, the channels are C3, P3 and P4. 

 

Fig. 6. Model of the recurrent neural network 

 

Fig. 7. Positions of EEG acquisition channels selected by the typical testors method 

TABLE I 

HYPERPARAMETER 

Parameter Value 

Epochs 800 

Activation function Softmax 

Optimizer Adam 

Batch size 7 

Test size 0.3 

TABLE II 

INFORMATIONAL WEIGHT OF THE ACQUISITION CHANNELS OF EEG SIGNALS FOR THE CLASSIFICATION OF TWO CLASSES OF MI 

Channel Position Informational weight 

C1 FP1 0% 

C2 FP2 0% 

C3 C3 100% 

C4 C4 0% 

C5 CP5 0% 

C6 CP8 0% 

C7 P3 100% 

C8 P4 100% 
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The FFT variance feature information was classified using 

only the information from the channels containing the 

informational weight of 100%, that is C3, C7, and C8. The 

training can be observed in the graphs in figure 8, graph 1 shows 

how the losses were decreasing until reaching 0.1. In addition, 

graph 2 shows the training graph compared to the validation 

graph, both graphs are similar, however, the validation graph is 

more irregular, from epoch 400 it oscillated between 0.94 and 

0.97%, the latter being the maximum accuracy reached, while 

in the validation it reached 98%. 

Figure 9 shows the confusion matrix obtained during 

validation, we can observe that the right-hand MI 16 signals 

were effectively classified, confusing only one with the left-

hand MI. On the other hand, 100% of the left-hand MI signals 

were correctly classified. Furthermore, in Table 2 we observe 

the accuracy parameters of the LSTM neural network, which is 

97% overall, 94% for the right-hand MI, and 100% for the left-

hand MI class. We also obtained a precision of 0.97, which 

shows us the dispersion of the data, the sensitivity of 1, and the 

specificity of 0.94, the latter indicating how capable the 

algorithm is of distinguishing between positive and 

negative cases. 

V.  CONCLUSIONS 

The analysis of typical testors resulted in the selection of 

channels C3, C7, C8. On the one hand, the C3 channel belongs 

to the left-brain area, which is not a coincidence that it is the 

dominant side of right-handed people, as is the case of the study 

subject. According to the position of the international electrode 

placement system 10-20, the brain regions related to the C3 

acquisition channel belong to the central part between the 

frontal lobe, and the parietal lobe corresponds to the primary 

motor cortex, which is responsible for modulating the voluntary 

movement of the limbs.  

The acquisition channels located at positions P4 and P5 are 

part of the parietal lobe, which is located in the primary 

somatosensory area, this area receives information from the 

senses but is also responsible for motor coordination. Both 

brain regions are related to the imagination, sensitivity, and 

motor skills of the subject. 

The LSTM recurrent neural network, on the other hand, has 

been shown to have the ability to classify 

electroencephalographic signals using only one feature of the 

signal by means of a reduced number of neurons and layers. 

With the analysis of typical testors, the dimension of the data 

was reduced by eliminating the irrelevant information for the 

differentiation of both classes, which went from [8,120,200] to 

[1,3,120] with this reduction the classification time 

was reduced. 

For the analysis of the results, all 8 acquisition channels were 

classified under the same conditions mentioned in the 

experiment. The result was an accuracy of 88%, so our method 

improved the classification by 9%, this was achieved by 

eliminating the channels whose characteristics are redundant. 

Therefore, it can be concluded from these results for the test 

subject of this study it is necessary to use the acquisition 

channels C3, P4, and P5 together to achieve a distinction 

between the mental tasks of motor imagination of opening and 

closing the right hand and motor imagination of opening and 

closing the left hand. This experiment is replicable since the 

objective was achieved. However, as part of future work, brain 

signals from a larger number of people will be analyzed and the 

number of mental tasks with motor imagination will 

be increased. 

 

Fig. 8. Training and validation plots. 1: Loss graph. 2: Accuracy graph showing training and validation 

 

Fig. 9. Confusion matrix of the classification of EEG signals with MI 
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