



Abstract—We describe the process to perform software tests.

In an enterprise that produces a product line, even if they all

have the same goal, they may differ with regard to its

development platform, programming language, layer

architecture or communication strategies. The process allows

standardizing, coordinating and controlling the test execution for

all workgroups, no matter their individual characteristics. We

present roles, phases, activities and artifacts to address the

centralization, reusing and publication of the test scripts and the

results of their execution. Additionally, it involves the

virtualization for creating test environments, defining steps for

its management and publication. Also is presented a tool that

supports the process and allow the unattended execution of test

components. Finally, we describe two pilot projects

demonstrating the applicability of the proposed solution.

Index Terms—Software test process, testing tools, unattended

test execution, virtual laboratories.

I. INTRODUCTION

ESTING is one of the key activities regarding software

quality assurance and quality control. The testing phase

should be properly planned and organized in order to prevent

errors from manifesting in production and cause undesirable

behavior, while minimizing the time and effort employed [1],

[2]. Pressman argues that the strategy to test software must

provide a map that describes the steps to be taken as part of

the test plan, must indicate when they are planned and when

these steps will be performed, as well as how much effort,

time and resources will be consumed [1]. Several institutions

are engaged in the definition of models for software quality

[3], [4]. Besides, standards to fulfill the testing process have

been designed, for example: IEEE 1008-87 Standard for

Software Unit Testing, IEEE 1012-98 Standard for Software

Verification and Validation and IEEE 829-98 Standard for

Software test Documentation. At the same time,

methodologies and processes have been proposed [1], [2], [5],

describing activities, roles, and artifacts related to conduct

tests within the software development phases.

Manuscript received on February 25, 2013; accepted for publication on

May 3, 2013; final version received on June 19, 2014.
Emma Torres Orue, Jorge Lodos Vigil, and Ezequiel Sevillano Fernández

are with Segurmatica, Centro Habana, Zanja 651, Havana, Cuba (e-mail:

emma@segurmatica.com, lodos@segurmatica.com, ezequiel@segurmatica.
com).

Marta D. Delgado Dapena is with the Informatics Studies and Systems

Center in the Polytechnic Institute “José Antonio Echevarría,” Marianao, 114
Ave. 11909, Havana, Cuba (e-mail: marta@ceis.cujae.edu.cu).

Software product line engineering has received much

attention for its potential in the reuse of artifacts throughout

the project life cycle [6], [7], [8]. Similarly to the artifacts

designed during the implementation, testing artifacts have the

same opportunity of being reusable taking into account the

similarities identified in the product line [8], [9]. There are

some studies related to the generation of test cases and

building test scripts from the definition of similarities and

variations within a production line [10], [11]. However, scarce

references have been found related to the standardization of

the execution of the different test components that can be

generated in an organization that develops product line.

The automating of the execution of test components is an

advantageous aspect in the validation of the elements in a

production line [8], [9], [11]. It is suggested by [8] that

automation allows artifacts to be tested immediately after

being generated and integrated into the system. There are

dissimilar solutions to automate generation and execution of

test scripts [12], [13], [14], [15]. On the other hand, there are

tools to achieve unattended execution of components, from

Process for Unattended Execution

of Test Components

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, and Ezequiel Sevillano Fernandez

T

Fig. 1. UML Activity diagram of the phase Test Component Generation.

5 Polibits (49) 2014ISSN 1870-9044; pp. 5–15

models, coding scripts languages or test managers with

friendly user interfaces [16], [17], [18], [19]. However, these

solutions are designed to run scripts generated by specific

testing tools. This could implicate the use of different

applications for unattended test execution in order to perform

all the tests in a product line.

Due to the importance of using large and diverse test

environments in order to validate the artifacts in a product

line, it has been decided to incorporate the use of virtual

machines to facilitate the creation and maintenance of testing

laboratories. The integration between virtual laboratory

systems [20], [21] and testing tools [17], [18], [22] allows

testing applications on virtual machines based on defined test

cases. These solutions make possible to record and play back

the test runs, as well as to store the results and record

conditions that expose the errors for a follow-up. IBM

Rational Quality Manager [2] and TestComplete [22] are

proprietary solutions offered by the software companies IBM

Rational Software and SmartBear respectively. The limitation

of Rational’s tool is that the test scripts can only be generated

by products sold by the company [2], [17]. Furthermore,

TestComplete is designed only for machines with Windows

operating systems.

This paper describes a process to guide the unattended test

execution in real and virtual laboratories. It also shows the

characteristics of a tool that enables the execution of scripts

Fig. 2. UML Activity diagram of the phase Test Environment Creation.

6Polibits (49) 2014 ISSN 1870-9044

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, Ezequiel Sevillano Fernandez

generated by any application, either directly or through a

wrapper component. The article presents in the first section

the phases and roles involved in the process. The second

section shows the automation of the process described using

the tool designed to support it. After that, two pilot projects

conducted to validate the proposed solution are presented.

II. PROCESS FOR THE EXECUTION OF UNATTENDED TESTS

IN HETEROGENEOUS ENVIRONMENTS

The process consists of three phases: Test Component

Generation, Test Environment Creation and Test Execution

and Collecting Results. The inputs are the system modules

under test, the system requirements and the associated unit

tests. The outputs of the process constitute a knowledge base

that stores all the information related to the test runs. Fig. 1

shows a diagram with inputs and outputs of the process. This

process is divided in iterations repeated frequently and each

one starts from the addition of new modules or modifications

to the system in development.

The set of roles in the process includes conventional roles

in the stage of software testing such as the Test Manager, the

Tester and the Auditor. It also introduces the Expert and

Administrator roles. The first one is responsible for making

and publishing reusable artifacts for other specialists such as

templates, operating systems and software. The second one

manages and assigns the computers for developers and test

managers, as needed.

A. Phase I: Test Component Generation

The test manager is the one that develops the Component

Test artifact. This artifact is a test script generated by a

program that automates the validation of one or more

functionalities of a system module in different environments.

The selected tool must ensure that the script execution results

provide as much information as possible. This condition will

help discover the source of error in case of failures. Finally,

the created component is stored on a server that contains a

repository for this artifact. The Fig. 1 displays the activity

diagram of this phase.

B. Phase II: Test Environment Creation

The test environment creation involves the Administrator,

the Expert and the Test Manager. Fig. 2 shows how the Test

Manager prepares test environments based on real machines,

assigned by the Administrator, and also based on previously

created virtual machine templates and compiled software by

the Expert. The testing machines, real or virtual, will have the

basic requirements of hardware and software ensuring a

successful test run. They must also guarantee the

preconditions for the test execution; such as published data,

configuration files, among others. Finally, the version of the

system under test with its related test components is installed.

Both, the templates and virtual machines created, should be

stored and published on the server.

C. Phase III: Test Execution and Collecting Results

In the previous phase, the new versions of the software with

their associated test components are incorporated. At this

stage the associated test components must be run and the

results stored. It is recommended to perform this task

automatically and unattended, since this would allow the

specialist to save time and effort. The results of execution will

be stored centrally and will remain public for all specialists

involved in the project. Fig. 3 illustrates the activity diagram

of this phase.

Fig. 3. UML Activity diagram of the phase Test Execution and Collecting

Results.

During the implementation of the process, artifacts that

record information from the test components, as well as the

machine, time and physical path of where they are running,

are created. Additionally, the results contain data regarding to

the start date, context parameters and user who initiates the

process. In Fig. 4 it is shown a class diagram, depicting as

entities the repositories obtained during the process.

III. QUALITY TOOL

Quality is a multilayer system developed by the .NET

platform. Fig. 5 illustrates the relationship among the system

modules. Through a web interface the test components

information and its schedules can be recorded. The tool allows

defining test suites by grouping test components, which may

run simultaneously or sequentially. The Server Web Service

provides the functionality to manipulate test labs in real and

virtual environments. The Web Interface and the Server Web

7 Polibits (49) 2014ISSN 1870-9044

Process for Unattended Execution of Test Components

Service obtain and send data to the database through the

library that models the business entities.

During the stage of Test Execution and Collecting Results,

the Server Web Service determines the real execution

machine, and it communicates with the Client Web Service

installed on that computer to indicate it to run the test

component. According to the configuration, the Client Web

Service executes the test script located in a storage device of

the real machine or in a virtual machine allocated on it. The

scheduled execution is managed by the SQL Agent [23]. The

following describes the steps of the process automated with

the Quality tool.

The phase Test Components Generation is performed with

the help of tools available on the market to automate the

execution of tests [2], [15], [16], [18], [19]. Communication

libraries have been designed to create test scripts that interact

with the Quality tool for storing the results and events

generated from the runs. It also includes the insertion of the

output parameters, which specifies whether the execution was

successful or not. In case of error detection, the outputs should

reflect the causes.

To handle test components generated by tools that do not

allow direct use of the communication library, a wrapper

executor has been created. This binary is a test component

that’s able to run another test script and store the outputs in

the Quality System database through the communication

library. The input parameters of the wrapper are the test script

parameters and the path where the test component is located.

Finally, the Test Manager stores the test scripts created in a

server repository and inserts into the Quality system interface

the scripts names, parameters and locations on the server, as

can be seen in Fig. 6.

The first task to start Test Environment Creation is

performed by the Administrator. He must introduce in the

Quality tool the name, operating system and software installed

on the physical computers equipped for test execution, as well

as the Test Managers who can operate with them. The Expert

records information about operating systems, software and

virtual machine templates available for create test

environments. The Test Manager stores the data of its virtual

machines and distributes them to the real machines assigned

to it by the Administrator. Fig. 7 captures the data from a real

machine and the list of its virtual machines.

During the last stage, test components are organized in test

suits to be executed in a particular order. The Test Manager

indicates for each script, the test machine (virtual or real) that

will execute it. Next, the system makes a copy of the

component from the server to the test machine. Components

within a test suite may be performed sequentially or

simultaneously in one or more test machines. The suite of

tests is called Quality Control Process (QCP), and its

configuration can be seen in Fig. 8.

Fig. 4. UML Class Diagram with related entities in the process for running tests unattended.

8Polibits (49) 2014 ISSN 1870-9044

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, Ezequiel Sevillano Fernandez

The input parameters value of the test components can vary

for the same test suite, as well as the execution schedules. The

definition of these terms is called Instance of the Quality

Control Process. This concept allows that one defined test

suite can be executed at different times and under different

conditions determined by the values of the parameters and the

configured test environment. At this point, the required data

for a test suite execution is recorded. The Instance of the

Quality Control Process can be executed from the web

interface by user demand, or on a scheduled date and time.

The Auditor can get the results and events related to every

execution of test suite from the Quality web interface.

Additionally, during the configuration of the Quality Control

Process, Test Managers can identify email addresses to send

reports about test execution. These reports can be sent at

beginning and/or ending of the execution of a test suite and/or

a single test script; likewise if a system error is detected.

IV. APPLICATION IN PILOT PROJECTS

The designed process was applied to carry out the

unattended execution in two pilot projects in a software

development company. Those software projects present

differences regarding technology, programming language,

architecture and team size, demonstrating the applicability of

the proposal in various development environments. Results

from this experiment demonstrate the improvements that the

given solution provides to the test process in the selected areas

of the software company.

A. Pilot Project 1

The first pilot project works on a library implemented in

C++ native language by a single developer. It is a

multiplatform class library designed to extract files from

diverse compression formats. Associated with this, there is a

test project that contains more than 50 unit tests by format,

which were created using the Boost library [24]. These tests

validate all the library features. This project was developed

and verified prior to the conception of the proposed solution.

The developer ran the test project resulting binary in his

workstation whenever he wanted to validate it. The library

belongs to a system in production at the stations of the

company's customers. The process phases performed on the

library are explained below.

During the first phase a test script is created using the

wrapper provided by the Quality tool. This way, the wrapper

execution makes a run on the tests contained in the test project

binary and its results are stored in the Quality database. The

test input parameter of this component is the relative path

where the test project binary is located on the running

machine. Later a directory that contains the wrapper and the

binary is created on the server. Finally the test component

data created is saved in the Quality web interface.

The test environment for the library consists of a real

machine. In such a machine Framework .NET 2.0 and IIS 5.1

were installed. Also the tool web service for client machines

was published. Subsequently the information related to the

test station is stored. The development test environment took a

few hours, however this is done only the first time it is

introduced into the system.

Through the Quality webpage a test suite composed by the

compiled test component is designed. The prepared real

machine is selected, indicating the location within the

machine where the component will be run. Additionally, the

input parameter value representing the relative path of the test

project binary is set. The directory containing the test

component must be copied from the server to the client

machine before execution. The test will be executed with user

permission system. Fig. 9 displays the configuration of the

test instance for this test component.

The test suite execution takes place every month. For this,

one of the schedules configured in the system was selected.

The following image shows the description of the selected

schedule. After each run, the results are mailed to the library’s

developer.

Fig. 5. Internal structure of the Quality Tool.

9 Polibits (49) 2014ISSN 1870-9044

Process for Unattended Execution of Test Components

Results obtained in the experiment

The tests run to validate the extraction of the different

formats of the library took 49 seconds. In the first test suite

execution, 42 errors were detected, especially related to the

extraction of files whose formats are less common in the

client machines. As the errors detected were solved by the

developer, the tool allows to record and report the system

progress to other specialists monthly. The recurring execution

prevents the introduction of new defects caused by the

implementation of additions or modifications, and if this were

to happen, the automated process provides a way of finding

them in a short time.

B. Pilot Project 2

This pilot project concerned a multilayer system

implemented on the .NET platform whose development was

in progress at the solution application. It is a distributed

system whose architecture consists of a web interface, two

web services, and three class libraries. The development team

includes internal, temporary internal, and external company

developers. As features were added, the developers

implemented the related unit tests, which were executed on

the workstations. Next, the process applied to this project with

the described conditions will be exposed.

In the course of Test Component Generation stage, the

Visual Studio Team Suite development tool was used for

create scripts. Those test components directly reference the

libraries provided by the Quality tool to communicate with the

system. Table 1 shows the test types enclosed on the test

components created. One component perform one or more

validation or verification actions to the system under test, e.g.

the Unit Tests script, run all unit tests of a particular system

module. For each test, component folders with its files were

created on the server. Through the Quality web interface, the

information related to these components was stored.

Fig. 6. Test Edition Page of QUALITY tool.

Fig.7. Real and Virtual Machine Association Page of QUALITY tool.

10Polibits (49) 2014 ISSN 1870-9044

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, Ezequiel Sevillano Fernandez

The test environment was equipped for two physical

machines and four virtual machines. The Fig. 11 shows the

test lab established. Real Machine # 1 is intended only to hold

three virtual machines, in which test components executions

occur. Another virtual machine, fulfill the Server system role,

so the tests run on this machine focus on server functions. On

this machine the system under test web service for server was

installed. Real Machine # 2 plays a dual role, as well as

housing the Virtual Machine # 3, run tests on it directly.

Because Virtual Machines # 1, 2, 3 and the Real #2 are client

machines; the client web service of the system under test was

installed on them. The Server and Client machines

communicate each other across the local network. Real

Machine # 2 coincides with the one built in Pilot Project 1.

Therefore, it was not necessary to perform the installation

process to incorporate it into the system.

TABLE I.

TEST TYPES DISTRIBUTION BY THE TEST COMPONENTS.

Test Types
Test Component

Count

Unit Tests 1

Database Consistency Checking 1

Project Build 1

Functional Tests 20

Integration Tests 5

Web resources availability Checking 1

During the third phase, test scripts are grouped according

system functionalities to be verified. Table 2 summarizes the

configured tests suite or Quality Control Processes (QCP), the

component test types involved and the executions machines.

The size of a QCP is expressed as a/b, where a indicates the

Fig. 8. Quality Control Process Editing Page of QUALITY tool.

Fig. 9. Test Instance Edition Page of QUALITY tool.

11 Polibits (49) 2014ISSN 1870-9044

Process for Unattended Execution of Test Components

different test scripts implicated count and b represents the

number of times the test components are called. For example,

the QCP designed to run unit tests consists of three different

components: one for Unit Tests, others for Database

Consistency Checking and Project Building. Because the

system under test consists of 5 core modules, the QCP calls

the test scripts 15 times. Another example is the test suite to

check the client web service. In this case, there is a test

component and it is called four times, for each client machine

in the test lab.

Note that the test scripts are reused in the defined QCPs.

The same test components have been incorporated into

different QCPs to verify diverse aspects of the system under

test. This fact is evidenced in the QCPs to verify the on / off

virtual machines and to validate test execution in virtual

machines. The two test scripts present in the first process are

also included in the second, before and after the test com-

ponent responsible for running the test on the virtual machine.

It was decided to run the test components twice a week, to

perform regression testing from changes made during two or

three days. Once the configurations for executions were stored

on Quality tool, it was possible to update and redistribute the

system modules and test components among the test

environment machines. After each QCP execution, the results

are mailed to the specialists implicated. The following figure

shows a fragment of an Instance of the QCP instance run

result. The events generated by the test script can be seen.

Results obtained in the experiment

The registered time of execution of all test suites was

approximately three hours. It has been estimated that the

execution time of all test scripts performed manually takes 7

and a half hours. The possibility to perform runs outside

office hours and the presence of an isolated test lab from

developer machines saves development and test time for the

work team.

The company selected to do the pilot projects, have

followed the Scrum Agile methodology. A monthly record or

backlog of the development and test work, as well as the

defects detected, has been kept. Tasks are planned to be

completed in a similar time span, yielding a deliverable

Fig. 10. Selecting a schedule for a test suite execution by Quality tool.

Fig. 11. Test environment for the multilayer system under test.

12Polibits (49) 2014 ISSN 1870-9044

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, Ezequiel Sevillano Fernandez

artifact. To complete a functionality it is necessary to perform

two or more tasks, depending on its complexity. Tasks are

classified according to the stage where they were planned:

tasks planned for each sprint during the pregame to develop

the system (base tasks) and tasks arising from any errors

detected in a previous cycle (defect tasks).

Fig. 13 illustrates the behavior of the tasks performed during

one year since March 2010. The graph contains three series,

the number of base tasks; the number of defect tasks and the

total resulting from the sum of the number of tasks of both

previous classifications. The proposed solution was applied in

the month of June. In the figure we can see how in the months

of June, July and August the number of base tasks increased

because specialists created the artifacts required in the defined

process. However, in the months of September, October and

November there was only a slight increase in the tasks

generated by the defects found after the executions of test

suites in the previous months.

Fig. 13. Graph of the tasks performed before and during insertion of the

defined process. Defect tasks are represented by diamonds; base tasks, by

circles and the total by squares.

Fig.14 shows the behavior of the work done to develop the

pilot project 6 months after that the proposed process was

introduced with Quality tool for automation. The graph shows

defect tasks have decreased heavily, because the tool helps

early detection of errors introduced during implementation.

Consequently nonconformities can be discovered and resolved

in the same sprint in which they are introduced. From

February, the system under test was in the closing stage, for

this reason the base tasks also decreased, in turn minimizing

the total number of tasks to be performed.

Fig. 14. Graph of the tasks performed 6 months after inserting the proposed

process. Defect tasks are represented by diamonds; base tasks, by circles and

the total by squares.

Another improvement provided by the proposed solution to

the software development process can be seen in the fault

detection. The number of errors found was obtained from the

backlogs in each sprint. These defects were grouped into two

categories: defects detected in functionalities planned in the

current sprint (new defects) and failures identified in the

current cycle that correspond to functionalities that are

considered done in previous cycles (old defects). Fig. 15

describes the conduct of this variable at the same interval of

0

8

16

24

32

40

Mar-10 May-10 Jul-10 Sep-10 Nov-10 Jan-11 Mar-11

T
a
sk

s
C

o
u

n
t

Months

Total Tasks

Base Tasks Count

Defect Tasks Count

0

8

16

24

32

Aug-11Sep-11 Oct-11Nov-11Dec-11 Jan-12 Feb-12

T
a

sk
s

C
o
u

n
t

Months

Total Tasks

Base Tasks Count

Defect Tasks Count

Fig. 12. Quality report at QCP Instance run finished.

13 Polibits (49) 2014ISSN 1870-9044

Process for Unattended Execution of Test Components

Fig. 13 which represents the period before and during

implantation of the proposed solution.

Fig. 15. Graph with the monthly number of defects detected before and during

insertion of the proposed process. New defects are represented by diamonds

and old defects, by circles.

Above it can be seen that in July, a month after start the

solution implantation the system detected an increasing

number of defects. However in August few new flaws were

found, because the specialists were involved in resolving

problems encountered in July, as is outlined in the Fig. 13. In

September continues detecting errors due to the creation of

new test components. The faults exposed at this stage should

have been detected months before the application process. In

Fig. 16 can be observed the lines of nonconformities found 6

months after the introduction of the proposed process. At this

stage we can see that the number of defects found in features

implemented in the current cycle is greater than the number of

faults discovered in functionality delivered at earlier sprints.

Fig. 16. Graph with monthly the number of defects detected after inserting

the proposed process. New defects are represented by diamonds and old

defects, by circles.

The most frequent found errors are: Access denied to data;

unmanaged exceptions and absent of errors logs, problems

with web resources availability, multithreads synchronization

issues and timeout expiration. As the errors were detected and

solved by developers, unattended executing allows the store

and report to stakeholders of the run test results twice a week.

V. CONCLUSION

This paper has detailed a process to standardize the

unattended test execution in organizations that develop

software product lines. Three stages are defined: Test

0

4

8

12

16

20

24

28

Mar-10 May-10 Jul-10 Sep-10 Nov-10 Jan-11 Mar-11

D
e
fe

c
ts

 D
e
te

c
te

d

Months

No. New

Defects

0

4

8

12

16

20

24

28

Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12

D
e
fe

c
ts

 D
e
te

c
te

d

Months

No. New Defects

No. Old Defects

TABLE II

DEFINED QCPS FOR THE MULTILAYER SYSTEM

Quality Control Process Size Test Types Components Execution Machine

Unit Testing 3/15 Unit Tests Virtual Machine 1, 2

Database Consistency Checking

Project Build

Client Web Service Checking 1/4 Web Resources

Availability Checking

Virtual Machines 1, 2, 3,

Real Machine 2

Virtual Machines Replication 1/1 Integration Tests Real Machine 2

Machines Edition 3/3 Functional Tests Virtual Machine 1

Relocate Tests 2/2 Functional Tests Virtual Machine 1, 2

Integration Tests

Timeout expires 1/1 Functional Tests Virtual Machine 3

Test Edition 3/3 Functional Tests Machine Real 2

Test Parameters Edition 2/2 Functional Tests Virtual Machine 2

Process Edition 5/5 Functional Tests Virtual Machine 1, 2, Real Machine 2

Report Generation 4/4 Functional Tests Virtual Machine 1

On / off Virtual Machines 2/2 Integration Tests Real Machine 2

Test run on Virtual Machines 3/3 Integration Tests Virtual Machine 1

Other operations on virtual machines 1/1 Integration Tests Real Machine 2

Access Permissions 1/1 Functional Tests Virtual Machine 1, Real Machine 2

Users Management 2/2 Functional Tests Virtual Machine 1

14Polibits (49) 2014 ISSN 1870-9044

Emma Torres Orue, Martha D. Delgado Dapena, Jorge Lodos Vigil, Ezequiel Sevillano Fernandez

Components Generation, Test Environments Creation and

Test Execution and Collecting Results. The processes

comprise the registration and control of test environments,

including machine virtualization. A tool to support the process

described has been implemented. This application facilitates

the artifacts generation and allows the unattended execution of

test components.

The proposed solution adopts the reusability approach

proclaimed by the engineering of software product lines. It

also promotes the standardization for the test execution of the

variations. The process application has reduced the

development and testing time, also has provided

improvements to the detection of defects in a software

company.

ACKNOWLEDGMENTS

This work was supported in part by the Software Security

Enterprise, Segurmatica, and the Informatics Studies and

Systems Center at the Polytechnic Institute “José Antonio

Echevarría.” The authors want to thank all workers of the

company who participated in the implementation of the

proposed solution. We also are very grateful to Heydi Mendez

and Annette Morales for their help with translating this paper.

REFERENCES

[1] R. S. Pressman and J. E. Murrieta, Ingeniería del software, un enfoque

práctico, 6th ed., Mexico, McGraw-Hil Interamericana, 2006, ch.13,

pp. 383–414

[2] J. Barnes, Implementing the IBM® Rational Unified Process® and

Solutions: A Guide to Improving Your Software Development

Capability and Maturity. Mexico City, IBM Press, 2007

[3] Software engineering — Product quality — Part 1: Quality model,

ISO/IEC 9126-1, 2001

[4] R. Pinheiro, K. M. Oliveira, and W. Pereira. “Evaluating the service

quality of software providers appraised in CMM / CMMI, Software

Quality Journal, vol. 17, no. 3, 2009, pp. 283–301; http://link.springer.

com/article/10.1007%2Fs11219-008-9065-4

[5] P. Abrahamsson, N. Oza, and M. T. Siponen, “Agile Software

Development Methods: A Comparative Review,” in Agile Software

Development Current Research and Future Directions, T. Dingsøyr, T.

Dybå and N. Brede, (eds.), Springer, 2010, pp. 31–53

[6] E. Bagheri, F. Ensan, and D. Gasevic, “Decision support for the

software product line domain engineering lifecycle,” Automated

Software Engineering, vol. 19, no. 3, 2012 pp. 335–377;

link.springer.com/article/10.1007/s10515-011-0099-7

[7] G. K. Hanssen, “Opening Up Software Product Line Engineering,”

PLEASE’2010 International Workshop, 2010; http://www.idi.ntnu.no/

grupper/su/publ/geirkjetil/hanssen-open prodline-please10.pdf

[8] P. A. da Mota Silveira, P. Runeson, I. do C. Machado, E. Santana, S.R.

de Lemos, and E. Engstrom, “Testing Software Product Lines,” IEEE,

vol. 28, no. 5, 2011, pp. 16–20; http://www.computer.org/csdl/mags/

so/2011/05/mso2011050016-abs.html

[9] J. Dehlinger and R. R. Lutz, “PLFaultCAT: A Product-Line Software

Fault Tree Analysis Tool,” Automated Software Engineering, vol. 13,

no. 1, 2006, pp. 169–193; http://www.cs.iastate.edu/~dehlinge/papers/

dehlinger_lutz_AUSE_2006.pdf

[10] A. Bertolino and S. Gnesi, “PLUTO: A Test Methodology for Product

Families,” Lecture Notes in Computer Science, vol. 3014, 2004, pp.

181–197; www.inf.ufpr.br/silvia/topicos/artigostrab10/Bertolino.pdf

[11] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “Testing

Software Product Lines Using Incremental Test Generation,” in Proc.

19th ISSRE, Washington, DC, 2008, pp. 249–258

[12] A. Edwards, S. Tucker, and B. Demsky, “AFID: an automated

approach to collecting software,” Automated Software Engineering,

vol. 17, no. 3, 2010, pp. 347–372. http://link.springer.com/article/10.

1007%2Fs10515-010-0068-6#

[13] M. S. Feather and B. Smith, “Automatic Generation of Test Oracles—

From Pilot Studies to Application,” Automated Software Engineering,

vol. 8 no. 1, 2001, pp. 31–61. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.29.7101&rep=rep1&type=pdf

[14] C. Schwarzl and B. Peischl. “Generation of executable test cases based

on behavioral UML system models,” in Proc. 5th Workshop on AST

'10, New York, NY, 2010, pp. 31–34

[15] Q. Xie and A. M. Memon, “Designing and comparing automated test

oracles for GUI-based software applications,” ACM TOSEM, vol, 16,

no. 1, 2007, pp. 4. http://dl.acm.org/citation.cfm?id=1189752

[16] F. Bouquet, C. Grandpierre, B.Legeard, and F. Peureux, “A Test

Generation Solution to Automate Software Testing,” in Proc. 3rd

International Workshop on AST '08, New York, NY, 2008, pp. 45–48

[17] C. Davis, D. Chirillo, D. Gouveia, F. Saracevic, J. B. Bocarsley, L.

Quesada, L. B. Thomas, and M. van Lint, Software Test Engineering

with IBM Rational Functional Tester: The Definitive Resource, 1st ed.

Upper Saddle River, N.J: IBM Press, 2009

[18] J. Levinson, Software Testing with Visual Studio® 2010, 1st ed.

Redwood City, CA: Addison-Wesley Professional, 2011

[19] L. Chang. “Platform-Independent and Tool-Neutral Test Descriptions

for Automated Software Testing,” in Proc. ICSE, New York, NY,

2000, pp. 713–715

[20] S. D. Burd, G. Gaillard, E. Rooney, and A. F. Seazzu, “Virtual

Computing Laboratories Using VMware Lab Manager,” in Proc. 44th

HICSS, Washington, DC, 2011, pp. 1–9.

[21] J. N. Matthews, T. Deshane, W. Hu, E. M. Dow, J. Bongio, P. F.

Wilbur, and B. Johnson. Running Xen: A Hands-On Guide to the Art of

Virtualization, 1st ed. Upper Saddle River, NJ: Prentice Hall, 2008

[22] N. Rice and S.Trefethen, TestComplete Version 8 Made Easier:

Keyword Testing, Falafel Software Inc., 2012

[23] R. Walters, G. Fritchey, and C. Taglienti. “Common Database

Maintance Tasks,” in: Beginning SQL Server 2008 Administration,

New York, NY: Apress L.P., 2009, pp. 225–233

[24] M. Reddy. “Testing,” in API Design for C++. Burlington, MA:

Morgan Kaufmann (Ed), 2011, ch. 10. pp. 218–328

15 Polibits (49) 2014ISSN 1870-9044

Process for Unattended Execution of Test Components

	I. INTRODUCTION
	II. Process for the Execution of Unattended Tests in Heterogeneous Environments
	A. Phase I: Test Component Generation
	B. Phase II: Test Environment Creation
	C. Phase III: Test Execution and Collecting Results

	III. QUALITY Tool
	IV. Application in Pilot Projects
	A. Pilot Project 1
	Results obtained in the experiment
	B. Pilot Project 2
	Results obtained in the experiment

	V. Conclusion
	Acknowledgments
	References

