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Abstract—This work describes a data-level parallelization
strategy to accelerate the discrete Wavelet transform, which was
implemented and compared in two multi-threaded architectures,
both with shared memory. The first considered architecture
was a multi-core server and the second one was a graphic
processing unit. Comparisons were based on performance metrics
(i.e. execution time, speeedup, efficiency, and cost) for five
decomposition levels of the DWT Daubechies db6 over random
arrays of length 103, 104, 105, 106, 107, 108, and 109. Execution
times in our proposed GPU strategy were around 1.2 × 10−5

seconds, compare to 3501 × 10−5 seconds of the sequential
implementation. On the other hand, the maximum achievable
speedup and efficiency was reached by our proposed multi-core
strategy for a number of assigned threads equal to 32.

Index Terms—Wavelet transform, brain-computer interface,
OpenMP, db6, CUDA, GPU.

I. INTRODUCTION

Development of brain-computer interfaces (BCI) for
detection of movement intention (MI) has focused on the
design of descriptors that allow a better characterization
of the electroencephalographic signals (EEG)[1]. The most
successful descriptors are based on the power spectrum,
which is calculated using the short-time Fourier transform
(STFT) [2]. However, the temporal and spectral resolution
of the STFT are highly dependent on the sample length, the
number of coefficients, and other parameters. The Discrete
Wavelet Transform (DWT) overcomes the limited resolution
of the STDT by applying a cascading set of orthonormal
filters. The coefficients of these filters describe a characteristic
finite-length pulse called mother wavelet. At each level in
the cascading structure, the mother wavelet is stretched
or compressed at different scales, leading to a particular
time-frequency representation at each level.

In the analysis of EEG signals, the DWT has been used
to remove noise cased by involuntary facial gestures [3],
[4], for pinpointing the source of chronic stress [5], and
for epileptic seizures identification [6]. The use of DWT
in portable computing applications is attractive, since it can
be implemented in devices with low power consumption,
without losing computing capacity. Such combination would
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eliminate the compromise between power consumption and
performance, currently affecting most of the BCI systems.
Widespread strategies to eliminate the aforementioned
compromise tend to detect the start of MI by means of a
separate unit, that is independent of the BCI and acts in
real time, thus avoiding turning on the BCI every time there
is a false positive. For instance, the work in [7] presents a
Wavelet-based strategy that reduces MI onset detection time
(OdT) to three seconds, however, in lag-sensitive applications
[8], [9], [10] one expects the OdT to be below one second.
On the other hand, the work in [7] not only uses the DWT to
characterize the EEG signal, but it also forms a feature vector
composed of auto-regression coefficients and FFT coefficients.
Said vector is projected onto a space with better discrimination
and lower dimensionality using Fisher’s discriminant analysis
method (FDA). Such descriptor is used to train a classifier
which produces a reliable MI-start label.

The DWT has also been applied to image compression [11],
where the most popular family has been the Daubechies for its
orthogonal nature, and for the ability of its members to locate
specific frequency bands, grouping them into well-defined
segments [12]. The conventional method to implement a DWT
is through a set of quadrature filters, where the low-pass
and high-pass filters are referred as h and g, respectively.
The Daubechies family members are named according to the
number of coefficients in their filters, e.g. D8, alternatively
db4, has 8 coefficients in each filter. Commonly used members
in medical image compression and texture analysis are the db4
and the db6, as these achieve better compression levels with
less complex implementation [13]. A low-cost implementation
of the Daubechies family is presented in [14], which modifies
the popular lifting algorithm [12] with the use of an integer
polyphase matrix, reducing arithmetic operations by almost a
factor of two by avoiding the use of multipliers.

This work proposes a data-level parallelization strategy
to accelerate computation of the DWT for Dabubechies
family. Said strategy was implemented and compared in two
multi-threaded architectures, both with shared memory. The
first considered architecture was a multi-core server, where
one or more processes are assigned to each core. The second
architecture was a graphic processing unit (GPU), programmed
using CUDA. Comparison metrics were based on execution
times for five decomposition levels of the DWT Daubechies
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db6 over random arrays of length 103, 104, 105, 106, 107, 108,
and 109.

The organization of this paper is as follow. Section II details
the proposed methodology. Section III shows the experimental
results. Finally, section IV argues on the limitations of this
work and presents courses for future actions.

II. METHODOLOGY

The DWT heart consists of the iterative application
of a pair of orthonormal filters, a low-pass filter
g = [g0, g1, g2, . . . , gm−1] and a high-pass filter
h = [h0, h1, h2, . . . , hm−1], defined by the coefficients
of their respective impulse response, {gj} and
{hj}, j = 0, 1, 2, . . . ,m − 1. Figure 1 shows the cascade
structure of the DWT for three decomposition levels.

Given the input signal x = [x0, x1, x2, . . . , xn−1], with
n >> m, its discrete Wavelet transform at the k-th
decomposition level is given by the approximation and detail
coefficients, Ak and Dk, respectively defined as

Ak = (↓ 2) (g ∗Ak−1) ,

Dk = (↓ 2) (h ∗Ak−1) ,

where k = 1, 2, . . . , L, A0 = x, (↓ 2) (y) indicates
subsampling of signal y, and (w ∗ z) denotes convolution
between the discrete signals w and z.

At each decomposition level, the response of both filters
to the input Ak−1 has to be calculated as the convolution
with their respective impulse responses. Let y = g ∗ Ak−1

be the response of filter g to the input Ak−1, with length
p = n+m− 1. Each element of y can be expressed as

y[i] =

m−1∑
j=0

g[j]Ak−1[i− j], (1)

where y[j] = yj is the j-th element of array y. We can observe
in Eq. (1) that each y[i] only depends on m elements of Ak−1,
consequently, it is possible to parallel compute all elements of
y. Such parallelization can be used to compute the response
of both filters to the input Ak−1, thus getting at once a single
decomposition level in the DWT. To implement db6 DWT
using the cascade structure, simply set the coefficients of each
filter as shown in Table I.

The following subsections describe two implementations of
the db6 DWT, which differ in the parallel strategy adopted
to compute the elements of y. The first implementation
was carried out in a multi-core architecture with shared
memory, where the number of simultaneously executed threads
is equal to the number of available cores. The second
implementation was carried out in a GPU, where it is possible
to simultaneously execute as many processes as operations are
needed. Each implementation takes advantage of the unique
characteristics of the architecture to maximize throughput.

A. Multi-core Server Strategy

The strategy designed for the multi-core architecture is
shown in Figure 2 as a block diagram. It consists of four
operations inside a main loop. Each iteration in the main loop
performs one-level decomposition of signal Ak−1. The first
operation performs padding on Ak−1 by concatenating the last
m elements of Ak−1 at its head and the first m elements of
Ak−1 at its tail. Such padding scheme was used to implement
circular convolution as described in [15].

The second operation in the main loop of Figure 2 performs
parallel convolution on the padded signal. It creates t threads,
each of which computes q elements of the convolution
sequence y, so that the relationship p = qt+ r is met, where
r ∈ Z+ is the amount of extra operations assigned to the
first r threads. The k-th thread computes y[i], ∀i ∈ Ek =
{k − 1, t + k − 1, 2t + k − 1, . . . , p − t + k − 1}, such
that |Ek| = q, ∀k ∈ {1, 2, 3, . . . , t}, when r = 0. On the
other hand, when 0 < r < t, the first r threads additionally
compute the elements y[j], j = qt+1, qt+2, . . . , qt+r. Each
thread computes the convolution sequence for both filters, the
low-pass filter response is stored in array Rg and the high-pass
filter response is stored in array Rh.

The third block carry out subsampling on the filter responses
to the padded signal. Padding is removed after subsampling,
discarding the first and last m elements of Rg and Rh,
leading into the approximation coefficients Ak and the detail
coefficients Dk. Finally, the fourth operation, depicted as block
number four in Figure 2, saves Ak and Dk.

B. Graphic Processing Unit Strategy

Figure 3 shows our proposed GPU strategy. It mainly differs
from our multi-core strategy in how convolution is computed.
Eq. (2) presents the symmetrical version of Eq. (1). It is called
symmetrical because m/2 elements before and after Ak−1[i]
are required to compute y[i]:

y[i] =

m−1∑
j=0

g[m− 1− j]Ak−1

[
j − m− 1

2
+ i

]
. (2)

There is an extra requirement in order for Eq. (1) and Eq. 2
to produce the same convolution sequence, both convolutions
must be circular. Therefore, padding Ak−1 is needed again
but only m elements are added. As can be seen in Figure 3,
padding concatenates the last m/2 elements of Ak−1 at its
head, and the first m/2 elements of Ak−1 at its tail.

Once padding is done, we compute y using as many
threads as elements in the convolution sequence, since
each thread computes one element of y[i]. Threads belong
to computational units called CUDA blocks. The number
of CUDA blocks b is automatically computed using the
relationship p = ab+ c, where a is the number of threads per
block, and c ∈ Z+ is the amount of extra operations assigned
to the last CUDA block. The computational model in CUDA
requires to build a grid of blocks.
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Fig. 1. DWT cascade structure for three decomposition levels

Fig. 2. Multi-core strategy for parallel DWT

TABLE I
FILTER COEFFICIENTS NEEDED TO IMPLEMENT DB6 DWT

j = 0 1 2 3 4 5
hj −0·1115407434 0·4946238904 −0·7511339080 0·3152503517 0·2262646940 −0·1297668676
gj −0·0010773011 0·0047772575 0·0005538422 −0·0315820393 0·0275228655 0·0975016056
j = 6 7 8 9 10 11
hj −0·0975016056 0·0275228655 0·0315820393 0·0005538422 −0·0047772575 −0·0010773011
gj −0·1297668676 −0·2262646940 0·3152503517 0·7511339080 0·4946238904 0·1115407434

TABLE II
DEVICE GEFORCE GTX 1080

CUDA Driver Version / Runtime Version 11.0 / 10.2
CUDA Capability 6.1
Total amount of global memory 8 GB
(20) Multiprocessors, (128) CUDA Cores/MP 2560 CUDA Cores
Maximum number of threads per multiprocessor 2048
Maximum number of threads per block 1024
Max dimension size of a thread block (x,y,z) (1024, 1024, 64)
Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535)
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Fig. 3. GPU strategy for parallel DWT

Each block is modeled as a grid of threads. For this work
purposes, we consider one-dimensional grids for both blocks
and threads. Therefore each block is a one-dimensional array
of threads. In Figure 3 we can see an example of such grid.

Eq. (2) also can be used to compute the high-pass filter
response, substituting the filter coefficients g with those of h.
Thus, each thread computes one element of both responses,
which are stored in Rg and Rh, respectively. The following
stages in our proposed GPU strategy are similar to those of the
multi-core strategy with the exception that subsampling only
removes m/2 samples from the start and end of both Rg and
Rh to produce Ak and Dk, respectively.

III. EXPERIMENTAL SETUP AND RESULTS

The parallel architecture selected to implement the proposed
multi-core strategy consisted of a PowerEdge T630 server with
two Intel Xeon E5-2670 processors and 70 GB in RAM. Each
processor hosts 19 cores and can simultaneously manage up to
48 active threads. The GPU strategy was implemented on an
NVIDIA GeForce GTX 1080 with the characteristics listed in
Table II. All programs were implemented using C language,
the OpenMP API for the multi-core strategy, and the CUDA
API for the GPU strategy.

A. Parallel Convolution Performance and Scalability

Since parallel convolution is the core of both proposed
strategies, we decided to analyze its performance using
three common metrics, namely speedup, efficiency and
cost. Additionally, we measured the scalability of parallel
convolution by computing each of the aforementioned metrics

over a set of test signals with lengths varying from 103 to 109

with a unit increment in the exponent. The test signals were
built using a Gaussian random number generator with zero
mean and unit covariance.

The parallel convolution algorithm in each proposed strategy
was used to compute the convolution of each test signal
with the impulse response of the low-pass filter g detailed
in Table I. Since performance of such algorithm depends on
the number of assigned threads t, we decided to compute the
aforementioned metrics as t changes from 2 to 512.

1) Multi-core Strategy: The parallel convolution
performance and scalability for the proposed multi-core
strategy are described by the plots shown in Figure 4. As
expected, execution times are fairly linear, the more threads
are assigned to the algorithm, the faster it finishes. Regarding
speedup, the algorithm displays a sublinear behavior for most
of the test signals, with exception of those with length 103

and 104.

Considering efficiency measures the fraction of time for
which a thread is active, the parallel convolution algorithm
assigns less work to a given thread as the number of threads
increases, thus decreasing the time each thread remains active.
The efficiency becomes almost linear as the test signal length
increases.

Based on the previous results, we can say the proposed
parallel convolution algorithm scales relatively well to the
input size, as the efficiency increases with the input size for a
given number of assigned threads. Additionally, the algorithm
can be made cost-optimal by adjusting the number of assigned
threads and the input size. Cost-optimality occurs when the
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Fig. 4. Scalability and performance analysis of parallel convolution for the multi-core strategy. The number of threads t assigned to compute the convolution
sequence is shown in the x-axis. The legend in (b) shows the color and marker used to plot the results for each test signal

algorithm is assigned between 32 to 64 threads, and the test
signal length is greater than 106.

2) Graphic Processing Unit Strategy: The fundamental
difference between the multi-core strategy and the GPU
strategy lies in how the total number of convolution elements
p are divided among threads. In the multi-core strategy each
thread must compute q = p/t elements of y, while in the
GPU strategy each thread computes one element of y, thus
we need to create p threads at once. Threads are grouped and
executed in CUDA blocks, which in turn are assigned and
executed in multiprocessors [16]. We can change the amount
of work performed by each multiprocessor varying the number
of assigned threads t.

The performance and scalability analysis of the parallel
convolution algorithm in our proposed GPU strategy followed
the same design as in the multi-core strategy, but due to
constraints in the memory size of the selected GPU, the
maximum test signal length was 108.

The analysis results are detailed by the plots in Figure 5,
where instead of changing the number of threads assigned
to the parallel convolution algorithm, we changed the
number of threads t per CUDA block. Clearly, execution
times significantly decrease when compared to the parallel
convolution in our multi-core strategy. Nonetheless, all the

curves in Figure 5(a) show similar behavior and range within
the same interval, pointing out not significant difference
between the amount of work done by the parallel convolution
as the test signal length increases.

Despite speedup is not as impressive as in the multi-core
strategy, where almost a 10 fold gain can be achieved, the
parallel convolution algorithm behavior is sublinear for all the
test signals. Efficiency and cost plots are certainly linear, in log
scale, after four threads per CUDA block have been assigned.

The curves for all test signals are almost identical in
Figure 5(b) and Figure 5(d), hence the scalability of parallel
convolution in our proposed GPU strategy scales better than
that of the multi-core strategy as the efficiency and cost can be
kept constant as the problem size increases. This algorithm can
also reach cost-optimality by assigning 32 threads per CUDA
block, as in this point we get a fair trade-off between speedup,
efficiency and cost.

B. DWT Performance and Scalability

To test performance and scalability of the cascade
implementation of the DWT, we computed the db6 DWT of
each test signal using a five-level decomposition, thus the
parallel convolution algorithm was executed five times, one
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Fig. 5. Scalability and performance analysis of parallel convolution for the GPU strategy. The number of threads t per CUDA block assigned to compute the
convolution sequence is shown in the x-axis. The legend in (a) shows the color and marker used to plot the results for each test signal

per decomposition level. The number of assigned threads were
kept constant among levels. We recorded the DWT execution
time for each test signal and computed speedup, efficiency
and cost.

This analysis was performed for both strategies. The
performance and scalability results for the multi-core strategy
are shown in Figure 6 and those for the GPU strategy are
displayed in Figure 7.

1) Multi-core Strategy: Execution times for a five-level
DWT decomposition using the multi-core strategy are
displayed in Figure 6(a). Each curve in the referred subfigure
shows how execution times change with the number of
assigned threads t for a given test signal. It should be noted
that one can clearly tell each curve apart before t = 32, after
that all curves cluster together in a single linear trend.

A similar behavior is observed for cost curves in Figure
6(d), as cost is defined as the product of execution time and
the number of assigned threads. Thus, the DWT execution time
is almost the same for all test signals after t = 32, no matter
the input size.

Regarding speedup, the multi-core DWT implementation
inherits the parallel convolution properties, showing a

sublinear behavior for all test signals, as can be observed
in Figure 6(c). Efficiency curves for all test signals show an
inflection point, located at different t values, after such point
all efficiency curves are almost parallel and decrease linearly.

Based on our previous analysis, an appropriate DWT
operation point in the multi-core strategy is t = 32, as it
offers a good trade off between execution time, efficiency,
speedup and cost. Additionally, we can say that such
algorithm boast excellent scalability as efficiency can be kept
constant by simultaneously increasing the number of assigned
threads and the test signal length.

2) Graphic Processing Unit Strategy: The GPU DWT
implementation looses the desired characteristics of its
multi-core counterpart, namely excellent scalability and
inflection points in efficiency and speedup curves. It also
inherits the properties of its parallel convolution algorithm,
that is to say similar execution times, efficiencies and costs
for all test signal lengths as the number of threads per CUDA
blocks changes, as can be observed in Figures 7(a), 7(b), and
7(d), respectively.
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Fig. 6. Scalability and performance analysis of the DWT for the multi-core strategy. The number of threads t assigned to the parallel convolution is shown
in the x-axis. The legend in (a) shows the color and marker used to plot the results for each test signal

Execution times are also significantly lower that in the DWT
multi-core implementation. The fact that we launch as many
threads as elements in the convolution sequence leads to flat
execution-time and speedup curves after t = 8, as it will
always launch p threads in total no matter how many threads
are assigned per CUDA block.

Based on the previous analysis and on the results shown in
Figure 7, we can say that a suitable DWT operation point in
the GPU strategy is t = 8, as in such point we get the highest
speedup and similar execution times for most test signals.

IV. CONCLUSION

We presented a data-level parallelization strategy
to accelerate computation of the DWT. Said strategy
was implemented and compared in two multi-threaded
architectures, both with shared memory. The first considered
architecture was a multi-core server and the second one
was a graphic processing unit (GPU). All programs were
implemented using C language, the OpenMP API for the
multi-core server, and the CUDA API for the GPU. The

DWT was implemented by means of the cascade structure as
shown in Figure 1, which consists in iteratively applying a
pair of orthonormal filters to the approximation coefficients
(i.e. the low-pass filter response). As the main operation to
compute the approximation and detail coefficients at each
decomposition level is convolution, the proposed data-level
parallelization strategy focused on distributing computation
of the convolution sequence elements among as many
threads as possible, leading to the design of a parallel
convolution algorithm.

A significant difference in the parallel convolution algorithm
designed for each architecture was the convolution sum
structure, which led to two different padding methods.
The multi-core strategy used the classical convolution sum
as described in Eq. 1, where causal filters are assumed.
Conversely, the GPU strategy used the symmetric convolution
as described in Eq 2, where time-centered filters are assumed.
The resulting convolution sequences are equivalent up to a
unit delay.
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Fig. 7. Scalability and performance analysis of the DWT in the GPU strategy. The number of threads t per CUDA block assigned to the parallel convolution
is shown in the x-axis. The legend in (a) shows the color and marker used to plot the results for each test signal

We analyzed the parallel convolution algorithm using
execution times, speedup, efficiency and cost as performance
metrics in each multi-threaded architecture. Results showed
the multi-core strategy scales fairly well to the input size,
however execution times remain high when compared to those
of the GPU strategy. Both parallel implementations displayed
sublinear behavior in their speedup curves as the number of
assigned threads increased, but in the GPU strategy there was
no significance gain after t = 8 because workload is already
evenly distributed among threads.

Based on the performance analysis results, we were able to
identify an optimal number of threads assigned to the parallel
convolution algorithm for both architectures. Such number
nearly matches the available cores in the multi-core strategy,
while in the GPU strategy it is convenient to select the smallest
t in the flat zone for the speedup curves.

To sum up, although the multi-core strategy boast excellent
scalability, the GPU strategy is preferred as being faster. It is
recommended to use the multi-core strategy for signals greater
than 108 elements in length, as the GPU architecture can’t

allocate enough RAM memory in the selected device. Future
work consist in implementing better convolution schemes
that reduces RAM requirements, such as overlap-and-add or
overlap-and-save, in frequency space. Additionally, we could
design truly parallel DWT algorithms taking advantage of
hardware pipeline designs that improve throughput such as
the lifting scheme.
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