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Abstract—Most of the past work in relation extraction deals
with relations occurring within a sentence and having only
two entity arguments. We propose a new formulation of the
relation extraction task where the relations are more general
than intra-sentence relations in the sense that they may span
multiple sentences and may have more than two arguments.
Moreover, the relations are more specific than corpus-level
relations in the sense that their scope is limited only within
a document and not valid globally throughout the corpus. We
propose a novel sequence representation to characterize instances
of such relations. We then explore various classifiers whose
features are derived from this sequence representation. For SVM
classifier, we design a Constrained Subsequence Kernel which is
a variant of Generalized Subsequence Kernel. We evaluate our
approach on three datasets across two domains: biomedical and
general domain.

Index Terms—Relation extraction, N-ary relations,
cross-sentence relations, subsequence kernel.

I. INTRODUCTION

The task of traditional relation extraction (RE) deals with
identifying whether any pre-defined semantic relation holds
between a pair of entity mentions in a given sentence [1,2,3].
In this paper, we propose a new formulation of the traditional
relation extraction task, where the relations are more general
than ACE-like intra-sentence relations [1] in the sense that
they may span multiple sentences and may have more than
two entity arguments (N-ary).

In addition, the relations are more specific than
Freebase-like relations [2] in the sense that their scope
is limited only within a document and not valid globally
throughout the corpus. Hence, distant supervision based
approaches [6,7] E.g., Drug2AE is such a relation between a
Drug and an AdverseEvent it causes. Scope of the Drug2AE
relation is limited only within a particular document (case
report of a patient), it may not be valid in another document
(case report of another patient) even if it contains mentions
of the exactly same Drug and AdverseEvent.

Hence, our proposed formulation is useful to retrieve only
the relevant documents which actually express a relation
among the entities; and not just contain the entities. Figure 1
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shows where our proposed formulation of relation extraction
lies within the spectrum of traditional formulations.

In the proposed formulation, each relation type is associated
with a signature which is a sequence of entity types of its
arguments. We define a candidate relation instance to be a
tuple of a document name followed by an ordered sequence of
entities which are type compatible with the relation’s signature.
If the relation holds for the argument entities within the
document, then the candidate relation instance is referred as a
relation instance (Example in Table I).

In this new formulation, a new challenge emerges: each
entity argument of a candidate relation instance may be
mentioned multiple times throughout the document either as
it is or in the form of its aliases; e.g. AB Volvo, Volvo;
or Bert-Olof Svanholm, Mr. Svanholm. Two candidate
relation instances are said to be similar if their corresponding
argument entities are identical or aliases of each other.
Thus, the candidate relation instances in a document can
be partitioned into groups of similar instances. Thus, all the
relation instances in Table I are similar and therefore part of
the same group.

Our task in this paper is to identify which of the candidate
relation instances truly represent a relation type of interest.
To characterize any candidate relation instance, we propose a
novel sequence representation. This representation is designed
in such a way that it will be same for all similar candidate
relation instances in a group. We explore various classifiers
whose features are derived from this sequence representation.
We also propose a new kernel function “Constrained
Subsequence Kernel” (CSK) which is designed to compute
number of common subsequences of interest between any two
sequence representations. Specific contributions of this work
are: 1) a new formulation of the N-ary and cross-sentence
relation extraction task, 2) a novel sequence representation
for characterizing the candidate relation instances, and 3) a
specifically designed subsequence kernel.

II. PROBLEM DEFINITION

Inputs: Target relation type R, its signature, a set of test
documents {⟨D′

1, LE
′
1⟩, · · · ⟨D′

L, LE
′
L⟩} where LE′

i is the list
of entities in document D′

i along with their types
Output: For each test document D′

i, all the candidate relation
instances for R are classified to check whether they are true
relation instances to produce a list LR′

i of such instances
for R.
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Fig. 1. Spectrum of relation extraction formulations

TABLE I
EXAMPLE OF THE SUCCESSION RELATION AND ITS INSTANCES

Relation type: Succession; Signature: (ORG, POST, PER, PER); Meaning: Succession(D, org, post, per1, per2) holds if the document D
reports that in the organization org, the person per1 is succeeded by per2 for the post post
Following relation instances are similar and are part of a single group (see Table III for the corresponding document news 1.txt):
⟨news 1.txt, AB Volvo, chairman, Pehr G. Gyllenhammar, Bert-Olof Svanholm ⟩
⟨ news 1.txt, Volvo, chairman, Pehr G. Gyllenhammar, Bert-Olof Svanholm ⟩
⟨ news 1.txt, AB Volvo, chairman, Pehr G. Gyllenhammar, Mr. Svanholm ⟩
⟨ news 1.txt, Volvo, chairman, Pehr G. Gyllenhammar, Mr. Svanholm ⟩

TABLE II
EXAMPLE OF ANNOTATIONS ⟨D1, LE1, LR1⟩

Target Relation: Interact; Signature: (Drug, Gene, Mutation); Interact (Di, d, g,m) holds if the document Di mentions that the drug d
treats the mutation m in the gene g
Entity annotations LE1 for document D1:
⟨gefitinib:Drug⟩,⟨erlotinib:Drug⟩,⟨EGFR:Gene⟩, ⟨T790M:Mutation⟩,⟨A750P:Mutation⟩, ⟨L858R:Mutation⟩
Relation annotations LR1 for document D1:
⟨erlotinib,EGFR,L858R⟩,⟨erlotinib,EGFR,T790M⟩

TABLE III
EXAMPLE OF A NEWS ARTICLE news 1.txt WHERE ENTITIES OF INTEREST ARE HIGHLIGHTED

An extraordinary shareholders meeting of AB Volvo in Gothenburg, Sweden, elected Bert-Olof Svanholm
chairman of the Swedish automotive group, in line with an earlier proposal. Mr. Svanholm is president of
ABB Asea Brown Boveri Ltd., an engineering concern jointly owned by Asea AB of Sweden and BBC Brown Boveri
AG of Switzerland. He succeeds Pehr G. Gyllenhammar,who resigned in December after the collapse of a plan
to merge Volvo’s vehicle operations with those of French partner Renault SA.

Training regime: To learn relation extraction model for
R, we need a set of annotated training documents
{⟨D1, LE1, LR1⟩, · · · ⟨DK , LEK , LRK⟩}, where LEi is the
list of entities in the document Di along with their types and
LRi is the list of relation instances of type R which hold
within Di. It is enough to annotate any one representative
relation instance from each group of similar instances. We
refer to this annotation scheme as RIGD (at least one Relation
Instance per Group per Document) level as against the
traditional mention-level annotation (Table II).
Scope and Assumptions: Multiple target relation types
are handled by providing separate annotations (LRi’s) and
learning separate extraction models for each relation type.
Identification of entities and their types is out of scope of this

paper. For each test document D′
i, we assume availability of

the LE′
i’s. We do not assume availability of alias information.

For identifying aliases, we use high-precision domain-specific
rules; details of these rules are included in the Appendix.
Evaluation: We evaluate at RIGD-level where a true positive
is counted for each group of predicted relation instances,
if any of the relation instance from the group is listed in
gold-annotations (LRi). A false positive is counted for each
group of predicted relation instances, if none of the relation
instances from the group are listed in gold-annotations.

Also, a false negative is counted for each group of
relation instances listed in gold-annotations, if none of the
relation instances in the group appear as the predicted
relation instances.
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TABLE IV
A FEW EXAMPLE SUBSEQUENCES OF SEQUENCE REPRESENTATIONS OF T1 AND T2 (TABLE VI)

Subsequences not satisfying Constraint 1: (meeting; OEORG; elected; E3), (E4; OEPOST ; of)
Subsequences not satisfying Constraint 2: (E1; E2), (E3; E3), (E2; E4)
Subsequences satisfying both the constraints: (meeting; E1; elected; E4), (E4; succeeds; E3), (elected; E4; E2; of; group),
(E2; of; E1; SB; E3)

III. PROPOSED APPROACH

We propose a novel sequence representation for a
candidate relation instance, which captures its important
characteristics. An N-ary candidate relation instance is a
(N + 1) tuple containing document name D and N entity
arguments–E1, E2, · · ·EN .

Here, E1, · · ·EN may not be of N distinct entity types;
Ei just represents the ith entity argument of the relation.
Sequence of entity types of these N entity arguments
(ET1, ET2, · · ·ETN ) is the signature of the relation type.

E.g., the relation Succession (Table I) holds between 4
entity arguments of entity types: ET1= ORG, ET2= POST
and ET3=ET4= PER. An example instance of this relation
is represented as the following 5-tuple (Table III): T1= ⟨D=
news 1.txt, E1= AB Volvo, E2= chairman, E3= Pehr G.

Gyllenhammar, E4= Bert-Olof Svanholm⟩.
There are other candidate relation instances for which

the relation does not hold but they just conform to
its signature; e.g., T2= ⟨D= news 1.txt, E1= ABB Asea

Brown Boveri Ltd., E2= president, E3= Bert-Olof

Svanholm, E4= Pehr G. Gyllenhammar⟩. Hence, T1 is a
positive instance for the relation type Succession whereas T2

is a negative instance.
Span and Minimal Span: We define span of a candidate
relation instance T as the sequence of sentences in the
document D covering all the mentions of its argument entities
(including aliases). The sequence starts with the earliest
mention of any entity argument (or its alias) involved in T and
stretches up to the latest mention. For each argument pair of T ,
minimum number of sentences separating corresponding entity
mentions is computed. We define minimal span of a candidate
relation instance as the maximum of minimum number of
separating sentences across all argument pairs. We use minimal
span to filter out candidate relation instances having values
more than some threshold. E.g., T1 has span of 3 sentences
and the minimal span of 2 (Table III) corresponding to the
argument pair of E2 and E3 which are 2 sentences apart and
this is the maximum separation across all argument pairs.

TABLE V
ADDITIONAL AUXILIARY FUNCTIONS DEFINED ANALOGOUS TO K′

n AND
K′′

n

Auxiliary
Functions

For counting common subsequences which...

aK′
n, aK

′′
n contain token a

bK′
n, bK

′′
n contain token b

abK′
n, abK

′′
n contain both the tokens a and b

A. Constructing Sequence Representations

We propose to characterize any candidate relation instance
T of relation type R in the form of a sequence of tokens of
certain types:

–– Ei: Mentions of the ith entity argument (and its aliases)
of T within the span of T .

–– SB: Sentence boundaries of the sentences in the span
of T .

–– OEETj : Mentions of other entities than the argument
entities (and their aliases) which occur within the span
of T and which are of type ETj . Tokens of this type
encode important discourse information by capturing
mentions of other entities of type ETj .

–– Words: All the words (excluding stop words) occurring
within the span of the instance T .

In order to construct the sequence representation of
a candidate relation instance, these tokens are arranged
sequentially from the beginning of the span till the end.
The tokens are arranged in the same order as they occur in
the document. In other words, these tokens are place-holders
in the sequence representation, for each important piece
of information.

Table VI shows sequence representations for our example
instances T1 and T2. It can be observed that for T1, all
the mentions of the entity argument Bert-Olof Svanholm

including its aliases (Mr. Svanholm and He)1 are captured
using the token E4. Also, president is represented using
the token OEPOST , which is an entity of type POST but is
not an argument entity of T1 .
Generalizing the sequence representation: We create
clusters of the frequently occurring words in a domain. By
considering cosine similarity among the word embeddings,
we apply hierarchical clustering with complete linkage.
E.g., in Biomedical domain, following is an example
word cluster {radiotherapy, chemotherapy, adjuvant,
immunotherapy}. These word clusters are used to generalize
the sequence representation by replacing a single word token
with a set of 2 tokens containing word itself along with its

1In principle, coreferences of entity arguments can be used instead of just
aliases when we add tokens of the form Ei and OEETj

in the sequence
representation. But coreference resolution is itself a difficult problem and is
not accurate enough in practice for Biomedical domain documents. Hence,
we use coreferences only for general domain dataset.
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TABLE VI
EXAMPLES OF SEQUENCE REPRESENTATIONS. WE USE ; FOR SEPARATING TOKENS IN A SEQUENCE

Sequence representation of T1=⟨D=news 1.txt, E1=AB Volvo, E2=chairman, E3=Pehr G. Gyllenhammar, E4=Bert-Olof
Svanholm⟩:
extraordinary; shareholders; meeting; of; E1; in; gothenburg; sweden; elected; E4; E2; of; Swedish; automotive; group; in;
line; with; earlier; proposal; SB; E4; OEPOST ; of; OEORG; engineering; concern; jointly; owned; by; OEORG; OEORG; of;
switzerland; SB; E4; succeeds; E3; resigned; in; december; after; collapse; of; plan; to; merge; E1; vehicle; operations;
with; of; french; partner; OEORG

Sequence representation of T2=⟨D=news 1.txt, E1=ABB Asea Brown Boveri Ltd., E2=president, E3=Bert-Olof Svanholm,
E4=Pehr G. Gyllenhammar⟩:
extraordinary; shareholders; meeting; of; OEORG; in; gothenburg; sweden; elected; E3; OEPOST ; of; swedish; automotive;
group; in; line; with; earlier; proposal; SB; E3; E2; of; E1; engineering; concern; jointly; owned; by; OEORG; OEORG; of;
switzerland; SB; E3; succeeds; E4; resigned; in; december; after; collapse; of; plan; to; merge; OEORG; vehicle; operations;
with; of; french; partner; OEORG

cluster ID. Hence, the sequence representation for T1 would
now be: {c12, extraordinary}; {c43, shareholders}; {c47,
meeting}; of; E1; in;· · ·

B. Constrained Subsequence Kernel (CSK)

Generalized Subsequence Kernel (GSK) proposed by
Mooney and Bunescu [3] computes the number of common
subsequences of length n shared by two generalized
sequences, in polynomial time. The sequences which
share more such common subsequences, get a higher
similarity score.

Moreover, the subsequences are weighted by their
sparseness in the original sequences, i.e. subsequences which
are not contiguous and spread over a greater length in the
sequences will get lower weights (inversely proportional to
length of their spread in those sequences). In a generalized
sequence, any token in a sequence can be generalized to a set
of values; e.g., we use word cluster IDs as the generalizations
for actual words.

We propose a variant of the generalized subsequence kernel,
namely Constrained Subsequence Kernel (CSK). As the name
suggests, CSK differs from the original kernel GSK by
constraining the subsequences to consider. Our goal is to
design a kernel function such that it will compute a high
similarity score among the two candidate relation instances
if both of them are true relation instances. The similarity
should be lower if one of them is a true relation instance and
other is not.

Hence, the intuition is that the common subsequences (to
consider during kernel computation) should contain at least
two distinct tokens of the type Ei. Because presence of at
least two of these tokens in a subsequence, ensures that the
subsequence captures interaction among at least two entity
arguments. Also, the common subsequences are constrained
to have length of at least 3.

This ensures that any common subsequence will contain
at least one token other than the two tokens corresponding
to entity arguments. Thus, the following 2 constraints are
considered (see Table IV).

Constraint 1: A subsequence should contain at least two
distinct tokens from E1, E2, · · · , EN ,

Constraint 2: A subsequence should contain at least
three tokens.

C. Formal Definition of CSK

Let CSK(s, t, n, λ, a, b) be the constrained subsequence
kernel which computes number of λ-weighted common
subsequences of length n shared by the sequences s and t such
that each of these common subsequences contains particular
tokens a and b. Here, a and b are considered to incorporate
the Constraint 1; and the Constraint 2 is trivially satisfied by
considering CSK with n ≥ 3. Also, λ is a number between
0 and 1.

Each common subsequence is weighted by λl where l is
the sum of lengths of the subsequence’s spread in s and t.
Let Σ1,Σ2,Σ3, Σ4 and Σ5 be disjoint spaces representing
various types of tokens used in the sequence representation:
(i) Σ1 = {E1, E2, · · ·EN}, for N -ary relation type, Ei is a
place-holder for mentions of the ith entity argument of the
relation type, (ii) Σ2 = {SB}, the “sentence break” token,
(iii) Σ3 = {OEET1

, · · ·OEETM
}, M is the no. of distinct

entity types in the relation’s signature, (iv) Σ4=Set of words,
(v) Σ5=Set of word cluster IDs

Sequence representation for any candidate relation instance
belongs to Σ∗, where Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ {Σ4 × Σ5}.
Each sparse subsequence of such sequence representations
then belongs to Σ′∗ where Σ′ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4 ∪ Σ5.
We design an efficient recursive formulation for computing
CSK(s, t, n, λ, a, b).

This formulation is derived on the similar lines as that of
the generalized subsequence kernel [3] and hence the same
notations (Kn(s, t), K ′

n(s, t) and K ′′
n(s, t)) are used with

similar meaning. However, we introduce additional auxiliary
functions (see Table V) for taking the Constraint 1 into
consideration for CSK computation.

As per its definition, K ′
n(s, t) adds length from beginning

of a common subsequence to the end of the sequences s and
t. We define aK ′

n(s, t) to be a similar function with the only
difference that it considers only those common subsequences
which contain the token a. Similarly, the function aK ′′

n(s, t) is
defined analogous to K ′′

n(s, t). The other auxiliary functions
are defined analogously. The detailed computation steps are
depicted in the Table VII.
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Here, the function c(x, y) computes the number of common
tokens between the sets x and y. Also, as a and b would always
be from {E1, E2, · · ·EN} and there are no generalizations
defined for these tokens, the equality conditions (x == a
and x == b) will be satisfied only when singleton tokens
are involved.

This simplifies the computation for additional auxiliary
functions. Recursive computations of K ′ and K ′′ are same as
the generalized subsequence kernel. Table VII shows recursive
updates for other functions (like aK ′′, bK ′′, abK ′′, aK ′, bK ′

and abK ′) by taking into consideration the first constraint.
These values are computed incrementally from i = 0 to

n and finally used to compute the value of abKn(s, t) i.e.
CSK(s, t, n, λ, a, b).

D. Classifying Candidate Relation Instances

For each training document Di (Table II), initially
candidate relation instances are generated using all possible
combinations of entities in LEi which conform to the
signature of the target relation type. Candidate relation
instances having minimal span more than some threshold
are filtered out as they are unlikely to be true relation
instances. Out of the remaining candidate relation instances,
the ones which are similar to any of the instance in LRi

are treated as positive instances for a binary classifier and
the remaining as negative instances. During testing, candidate
relation instances are generated for a document D′

i in a similar
way by using LE′

i and the signature of the target relation type.
We explored 3 classifiers whose features are derived from the
proposed sequence representation, either explicitly (MaxEnt)
or implicitly (SVM with CSK & LSTM).
Maximum Entropy (MaxEnt) Classifier [4]: The features
are explicitly engineered from the sequence representation of
any candidate relation instance (Table VIII).
LSTM [5]-based Classifier: We define an embedded
representation for each unique token appearing in sequence
representations. This representation is a concatenation of two
vectors. For word tokens, the first vector is initialized using
pre-trained word embeddings and the second vector is set to all
zeros. For other tokens (e.g. Ei, OEETj

, SB), the first vector
is set to all zeros whereas the second vector contains one-hot
representation for all the distinct non-word tokens. Sequence
of these tokens is then passed through an LSTM layer and the
output of the final step is connected through a hidden layer to
a softmax layer representing the two class labels.
Support Vector Machines with CSK: Our principal approach
is SVM [6] with the CSK kernel. Let R be an N -ary
relation type and s, t be the sequence representations of any
two candidate relation instances. Let CSKλ

N be the overall
kernel across all entity arguments of R. It is computed and
normalized as follows:

CSKλ
N (s, t, n) =

N−1∑
i=1

N∑
j=i+1

CSK(s, t, n, λ,Ei, Ej),

NCSKλ
N (s, t, n) =

CSKλ
N (s, t, n)√

CSKλ
N (s, s, n) · CSKλ

N (t, t, n)
.

We combine kernel functions for various subsequence
lengths (i.e. n) to get final kernel function:

CSKλ
Final(s, t) =

∑N′

k=3 2
N′−k ·NCSKλ

N (s, t, k)∑N′

k=3 2
N′−k

.

N ′ is a parameter controlling the number of different
subsequence lengths. E.g., if N ′ = 5 then subsequences of
lengths 3, 4 and 5 are considered.

IV. EXPERIMENTAL ANALYSIS

We evaluate our approach on 2 datasets from Biomedical
domain and 1 general domain dataset. For the proposed new
formulation of the N-ary cross-sentence relation extraction
task, there are no readily available public datasets. We
converted2 annotations of some public datasets used for other
tasks, to the RIGD-level annotations.

A. Datasets

Bacteria Biotope: Bacteria Biotope task [7] was held as
a part of BioNLP 2016 shared task. It has annotations for
Lives In event having two entity arguments–Bacteria and the
location where it was found (either Habitat or Geographical).
We mapped this event to a binary, cross-sentence relation
Lives In, and converted the mention-level annotations to RIGD
level. We used simple rules to identify aliases of the bacteria
names. e.g. Salmonella Typhimurium↔S. Typhimurium

and salmonellae↔salmonella. We used train and dev
partitions of the dataset3 to carry out 2-fold cross-validation
(Table IX), similar to VERSE [8] which was the best
performing system for this task.
Drug-Gene-Mutation: Peng et al. [9] released a dataset4

where known interactions among Drug, Gene and
Mutation were captured as a traditional mention-level
ternary cross-sentence relation Interact. We converted these
annotations for the Interact relation to RIGD-level. As we do
not have access to complete documents, pseudo-documents
were created for each section of consecutive sentences used in
the dataset. As the original annotations were obtained through
distant supervision; instead of using all non-positive candidate
relation instances as negative instances, we only used the
explicitly annotated negative relation instances. In order to
compare the performance with the approach of Peng et al. [9],
we computed the “Accuracy” metric at mention-level along
with other metrics at RIGD-level (Table X).
MUC-6: We used the train and test datasets for management
succession event from MUC-6 [10] and converted the
annotations into a 4-ary relation Succession (Table I). The
event arguments in the original dataset are mapped to entity
arguments for the relation. 32 documents each from train
and test partitions contained the complete Succession relation

2Conversion and evaluation scripts for all the datasets will be made public
if the paper is accepted.

3http://2016.bionlp-st.org/tasks/bb2
4http://hanover.azurewebsites.net
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TABLE VII
RECURSIVE AND EFFICIENT COMPUTATION OF CONSTRAINED SUBSEQUENCE KERNEL (CSK)

Recursive computation for abKn(s, t) = CSK(s, t, n, λ, a, b):
K′

0(s, t) = 1, for all s, t
K′′

i (sx, ty) = λK′′
i (sx, t) + λ2K′

i−1(s, t)c(x, y)
If x == y and x == a then,

aK′′
i (sx, ty) = λaK′′

i(sx, t) + λ2K′
i−1(s, t)

If i > 1 then,
bK′′

i (sx, ty) = λbK′′
i (sx, t) + λ2bK′

i−1(s, t)

abK′′
i (sx, ty) = λabK′′

i (sx, t) + λ2bK′
i−1(s, t)

Else If x == y and x == b then,
bK′′

i (sx, ty) = λbK′′
i (sx, t) + λ2K′

i−1(s, t)
If i > 1 then,

aK′′
i (sx, ty) = λaK′′

i (sx, t) + λ2aK′
i−1(s, t)

abK′′
i (sx, ty) = λabK′′

i (sx, t) + λ2aK′
i−1(s, t)

Else If c(x, y) > 0 then,
If i > 1 then,

aK′′
i (sx, ty) = λaK′′

i (sx, t) + λ2aK′
i−1(s, t)c(x, y)

bK′′
i (sx, ty) = λbK′′

i (sx, t) + λ2bK′
i−1(s, t)c(x, y)

abK′′
i (sx, ty) = λabK′′

i (sx, t) + λ2abK′
i−1(s, t)c(x, y)

Else
aK′′

i (sx, ty) = λaK′′
i (sx, t); bK′′

i (sx, ty) = λbK′′
i (sx, t)

abK′′
i (sx, ty) = λabK′′

i (sx, t)

K′
i(sx, t) = λK′

i(s, t) +K′′
i (sx, t); aK′

i(sx, t) = λaK′
i(s, t) + aK′′

i (sx, t)
bK′

i(sx, t) = λbK′
i(s, t) + bK′′

i (sx, t); abK′
i(sx, t) = λabK′

i(s, t) + abK′′
i (sx, t)

Sum := 0
For j = 1 to |t|

If x = t[j] and x = a then, Sum := Sum+ λ2bK′
n−1(s, t[1 : j − 1])

Else If x = t[j] and x = b then, Sum := Sum+ λ2aK′
n−1(s, t[1 : j − 1])

Else If c(x, t[j]) > 0 then, Sum := Sum+ λ2abK′
n−1(s, t[1 : j − 1])c(x, t[j])

abKn(sx, t) = abKn(s, t) + Sum

TABLE VIII
MAXENT FEATURES FOR A CANDIDATE RELATION INSTANCE T AND ITS SEQUENCE REPR. Seq(T )

Feature Description
TupleSpan Integer-valued feature indicating the minimal span of T in terms of number of sentences
SentDiffij
SameLineij

Integer-valued features for each pair of Ei & Ej indicating minimum number of sentences separating them in
Seq(T ); or indicating whether they occur in a single sentence in the span of T

EiEjOEETk Boolean feature for each triplet of Ei, Ej and OEETk which is true if OEETk occurs between Ei and Ej in Seq(T );
and ETk is entity type of either Ei or Ej . These features capture key discourse information about mentions of
other entities occurring between the mentions of argument entities of T .

EiEjNoOEETk Boolean feature for each triplet of Ei, Ej and OEETk which is true if no OEETk occurs between Ei and Ej in
Seq(T ); and ETk is entity type of either Ei or Ej

Word / Cluster Each word occurring in Seq(T ) and its cluster ID are boolean features because some of these words may be key
lexical cue-words for the relation type

and were used for our evaluation (Table XI). The original
dataset labelled “gold” aliases for entities; these were used
for converting the annotations. But our algorithm does not use
gold aliases during testing; rather we use simple high-precision
domain-specific rules (e.g. Bert-Olof Svanholm and Mr.

Svanholm are identified as aliases).
Dataset Statistics are shown in Table XII.

Implementation Details: Minimal spans used for filtering
candidate relation instances were as follows (#sentences):
Succession-2, Lives In-4, Interact-2. For all the experiments,
the CSK parameters were set as follows: N ′ = 4, λ = 0.9.
We used libsvm [13] and keras [14] for SVM and LSTM
implementations and our own implementation for MaxEnt.
C parameter for SVM was set to 1 for all experiments

and instance weights were used (in all classifiers) so as to
ensure that sum of weights of positive instances is same as
that of negative instances. 100-dim GloVe [15] word vectors
(pre-trained on Wikipedia) were used for finding word clusters
as well as for the LSTM-based classifier.

B. Analysis of Results and Errors

Results: The SVM with CSK outperformed MaxEnt and
LSTM-based classifiers on all the 3 datasets (Tables IX, X
and XI). For Bacteria-Biotope dataset, it outperformed the
previous work, VERSE [8]. For Drug-Gene-Mutation dataset,
it outperformed one out of three previous works and for
MUC-6, there is no comparable previous result. Also, the
SVM with CSK was observed to have higher precision than
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TABLE IX
MENTION-LEVEL AND RIGD-LEVEL EVALUATION RESULTS FOR THE BINARY Lives in RELATION (BACTERIA BIOTOPE)

Level Fold MaxEnt LSTM SVM with CSK [8]
P R F P R F P R F P R F

train dev 61.2 55.8 58.4 62.8 54.9 58.5 69.0 57.3 62.6 58.2 61.0 59.6
Mention dev train 46.7 55.9 50.9 37.8 47.7 42.2 60.1 52.3 55.9 46.9 55.2 50.7

Average 54.0 55.9 54.7 50.3 51.3 50.4 64.6 54.8 59.3 52.6 58.1 55.2
train dev 53.8 50.9 52.3 54.2 46.7 50.2 63.2 55.2 58.9

RIGD dev train 43.5 59.5 50.3 35.4 52.4 42.3 56.2 54.2 55.2
Average 48.7 55.2 51.3 44.8 49.6 46.3 59.7 54.7 57.1

TABLE X
MENTION-LEVEL ACCURACY & RIGD-LEVEL (P,R,F) FOR THE TERNARY
Interact RELATION (DRUG-GENE-MUTATION). THE RESULTS BY QUIRK

AND POON [11] ARE MENTIONED AS REPORTED BY PENG EL AL. [9]

Approach P R F Accuracy
Maxent 73.2 65.2 69.0 76.0
LSTM 72.9 67.4 70.0 77.5
SVM with CSK 75.5 67.1 71.1 78.8
Quirk and Poon[11] - - - 77.7
Peng et al.[9] - - - 82.4
Song et al.[12] - - - 83.2

TABLE XI
RIGD-LEVEL (P,R,F) FOR THE 4-ARY Succession RELATION (MUC-6)

Approach P R F
Maxent 31.8 46.1 37.6
LSTM 20.0 28.9 25.2
SVM with CSK 73.3 28.9 41.5

recall. This is because each possible subsequence (satisfying
the constraints) of the tokens leads to a separate dimension
in the transformed space using CSK. Thus, feature-space
representation using CSK is sparse and it leads to higher
precision and lower recall for SVM, with limited training data.
There is scope for improving the recall by better generalizing
the sequence representations.
Ablation Analysis: We perform ablation analysis to evaluate
contributions of key design elements: constraints and word
clusters. For all the datasets, the reported results (Tables IX, X
and XI) are with word clusters and using the constraints.
Table XIII shows the effect of discarding each of these design
elements. Constraints in CSK were observed to be beneficial
for all the datasets, whereas word clusters were useful only
for Lives In relation.
Error Analysis: We analyzed poorer performance for the
Succession relation and observed that two major reasons are:
Class Imbalance and presence of two arguments with the same
entity type PER. As it is a 4-ary relation, number of possible
candidate relation instances is high and very few of them
actually represent the relation; resulting in Class Imbalance.
For T1 (Table VI), if last two arguments (E3 and E4) are
swapped, we get almost identical sequence representation
with just E3 and E4 swapping their positions. This new
instance (with swapped E3 and E4) is a negative instance
for the Succession relation unlike T1. It is challenging for
the classifiers to distinguish between these nearly identical

sequence representations of opposite classes, with limited
training data.

We analyzed poorer performance for the Interact relation
as compared to the state-of-the-art and observed that a major
reason was absence of “gold” entities information in the
original dataset which only annotated entities which are part
of annotated relation instances and not all entities. Tokens of
the type OEETj

in our sequence representation depend on
information of mentions of all entities; hence the sequence
representation could not characterize the relation instance
completely. Also, the annotation labels obtained through
distant supervision are not perfect. E.g., we get a false
positive for predicting ⟨ipilimumab, BRAF, V600E⟩ but it
is a true relation instance as per the following sentence in
the document: Rapid improvement of therapeutic

responses using combined vemurafenib plus

ipilimumab therapy for BRAF V600E mutation

positive melanoma is expected.

Although, the LSTM-based classifier and the SVM
with CSK both use the same sequence representation,
the LSTM-based classifier performs poorly in comparison.
Through the constraint on subsequences, the SVM with CSK
harnesses the knowledge that the tokens of type Ei are
more important. Whereas the LSTM-based classifier does
not explicitly harness this knowledge and needs further
exploration.

V. RELATED WORK

Our formulation of the relation extraction task differs
from the past work on the distant supervision based relation
extraction [16,17,18,19] and slot filling tasks [16] in terms of
scope of the relations. Rather than extracting corpus-level facts
/ relations, our approach focuses on determining whether a
relation holds for a tuple of entities within scope of a particular
document. Also, these approaches extract only binary relations
which are expressed in single sentences. To the best of our
knowledge, the problem of cross-sentence relation extraction
was first addressed by Swampillai and Stevenson [17]. They
proposed to introduce a dependency link between the root
nodes of parse trees containing the given pair of entities. They
developed features based on the shortest path connecting the
pair of entities in the new “fused” tree. Recently, Quirk and
Poon [11] proposed a new approach for cross-sentence relation
extraction using distant supervision. They proposed a graph
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TABLE XII
DATASET STATISTICS. EXCEPT FOR THE Interact RELATION WHERE NEGATIVE INSTANCES ARE EXPLICITLY ANNOTATED, FOR OTHER RELATIONS

NEGATIVE INSTANCES ARE AUTOMATICALLY GENERATED

Relation #Documents Mention-level Instances RIGD-level Instances
#pos #neg #pos #neg

Lives In (Bacteria-Biotope) 107 814 2506 392 1517
Interact (Drug-Gene-Mutation) 3652 3407 3564 2187 3182
Succession,Train (MUC-6) 36 377 43940 66 8344
Succession,Test (MUC-6) 36 474 13734 76 2874

TABLE XIII
ABLATION ANALYSIS (ALL THE NUMBERS ARE AT RIGD-LEVEL)

Lives In Interact Succession
Setting (Bacteria-Biotope) (Drug-Gene-Mutation) (MUC-6)

P R F P R F P R F
M: SVM with CSK 59.7 54.7 57.1 75.5 67.1 71.1 73.3 28.9 41.5
M without Constraint 1 (SVM with GSK) 74.6 12.7 21.6 73.1 57.3 64.2 100.0 7.9 14.6
M without word clusters 54.7 54.5 54.5 75.3 67.7 71.3 70.6 31.6 43.6

representation which incorporates both standard dependencies
and discourse relations. In a document graph, each node is
labeled with its lexical item, lemma and POS tag. Edges
are added between adjacent words as well as between words
connected with dependencies. Inter-sentential edges are added
in 3 cases: i) edge between root nodes of adjacent sentences,
ii) discourse relations and iii) co-references. Features are then
extracted from multiple paths in this graph and a binary
logistic regression classifier is trained using these features.

Peng et al. [9] proposed a general framework for N-ary
cross-sentence relation extraction, based on graph LSTMs.
They used the same document graph as proposed by Quirk
and Poon [11] as a backbone for their graph LSTM. The word
embeddings of input text are provided to the input layer. Next
layer is formed by the graph LSTM which learns a contextual
representation for each word. For the entities in a relation
instance, their contextual representations are concatenated and
provided as the input to the relation classifier. For training
graph LSTMs using backpropagation, the document graph
needs to be partitioned into 2 directed acyclic graphs (DAGs).
Song et al. [12] proposed graph-state LSTMs which do not
need such partitioning and use the original graph. They used
a parallel state to model each word, where state values are
enriched recurrently via message passing. In contrast to these
mention-level N-ary and cross-sentence relation extraction
approaches, our proposed formulation captures a broader
view of any relation instance in a single representation; by
incorporating multiple mentions of the entity arguments and
their aliases in a document.

VI. CONCLUSION AND FUTURE WORK

We proposed a new formulation of the relation extraction
task, where the relations are more general than intra-sentence
relations in the sense that they may span multiple sentences
(cross-sentence) and may have more than two arguments
(N-ary). Also, these relations are more specific than
corpus-level relations because their scope is only limited
within a document. A novel approach as well as new schemes

for annotation and evaluation were proposed for this proposed
formulation. We designed a sequence representation for
characterizing instances of such relations and explored various
classifiers whose features are derived from this sequence
representation. We also designed the Constrained Subsequence
Kernel for the SVM classifier. We evaluated our approach
on three datasets across two domains. In future, we plan to
explore various directions identified in the results analysis
section.
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