
 

AbstractMotor imagery (MI) is a mental representation of 

movement without per-forming or tensing any muscles. MI 

requires a conscious activation of the same brain regions involved 

in actual movement. Brain signals have been explored for multiple 

applications in biomedical engineering, such as the development of 

brain-computer interfaces (BCI). BCI systems are designed to 

translate users' intentions into control signals, commands, or 

codes. Nevertheless, the major challenge in BCI system 

development is classifying MI signals recorded by an 

electroencephalogram (EEG). This paper focuses on applying the 

testor theory and the logical combinatorial pattern recognition 

approach for feature selection to reduce the feature representation 

space for classification tasks. The EMOTIV EPOC+ EEG device 

recorded the MI-EEG signals with 14 electrodes. 

Index TermsTypical testors, feature subset selection, 

electroencephalographic signals, motor imagery. 

I. INTRODUCTION 

This paper focuses on the application of testor theory and the 

logical combinatorial pattern recognition approach for feature 

selection. The problem of selecting the subset of features that 

best describes a phenomenon from a larger set allows to reduce 

the size of solution space, so that results close to the optimum 

or the optimum itself are obtained with less resources (time and 

memory) [1]. 

Therefore, the aim of the paper was to reduce the MI-EEG 

(Motor Imagery Electroencephalographic) signals feature 

representation space for classification tasks. These signals were 

recorded by the Emotiv EPOC+ device which describes the 

signals by means of 14 electrodes distributed over the scalp. 

The EEG signals represent the electrical brain activity 

created by billions of neurons [2]. This activity represents the 

communication between the body and the brain. The analysis 

of EEG signals is highly relevant in health research for 

diagnosis, treatment, and monitoring of different diseases [2,3]. 

On the other hand, motor imagery, or MI, is a mental 

performance of movement without any physical activation. The 

movements analyzed were opening and closing of the hand. The 

practice of MI is used in the context of sports as well as in 

rehabilitation treatments because it requires the activation of the 

same brain areas. It has also shown positive results in learning 

of physical skills and strength gain [4]. 

The present document is composed of three more sections. 

The second section describes the basic concepts used: typical 

testors, electroencephalographic signals and motor imagery. 

Section 3 provides the framework that allowed for the typical 
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testors analysis. The framework includes the recording of MI-

EEG signals taken with the support of six test subjects, the 

preprocessing of the data and the selection of the minimal 

subset of feature that will allow for a correct classification. 

Finally, section 4 provides the typical testors found, which 

represent the minimum subset of features for describing objects. 

In addition, the informational weight (IW), which represents a 

measure of significance for each feature involved, is described. 

Thus, the higher its value, the more determinant it is to 

differentiate classes of objects. 

II. IMPORTANT CONCEPTS 

A. Typical Testors 

Technological advances have led to the generation of large 

amounts of data at an unprecedented speed. These data describe 

objects or phenomena with high number of features, resulting 

in a challenge for machine learning and data mining research 

[5]. Feature Selection is the area of pattern recognition 

"responsible for identifying those features that provide relevant 

information for classification purposes" [6]. 

There are different tools or methodologies applied in 

addressing feature selection. One of them is the logical 

combinatorial pattern recognition approach, where testor theory 

is applied for such task [6–8]. Testor theory was introduced in 

the 60s to locate faults in electronic circuits [7]. 

Dimitriev, Zhuravlev and Krendeleiev's testor theory 

approach [9] for classification and feature selection establishes 

that classes are disjoint sets, the criterion of comparison 

between features is Boolean, and the criterion of similarity 

between objects accepts that two objects are different if at least 

one of their features is also different [10]. 

Testor theory defines a testor as a feature subset that does not 

confuse object belonging to different classes. I.e., no object 

belonging to class T0 can be confused with any object of class 

T1 according to the values in its features [11]. According to 

Shulcloper et al. [12], the definition of testor can be extended 

to more than two classes. 

Within the set of testors there is the set of typical testors (see 

Fig. 1), also known as irreducible testors. A testor can be a 

typical testor if by eliminating one of its features, the remaining 

subset is no longer a testor. Therefore, a typical testor is the 

minimum feature subset needed to distinguish objects of 

different classes [10,12]. 
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The importance of the typical testor calculation lies in the 

reduction of the feature representation space, feature selection, 

as support for classification and pattern recognition 

systems [10]. 

As described so far, the main aim of the testor theory is 

feature selection. However, testor theory can be used to 

determine the relevance of each feature by computing the 

informational weight from the set of typical testors [13]. The 

informational weight is calculated by means of the relative 

frequency. Let be 𝜏 the number of typical testors found and 
τ(i) the number of typical testors in which the feature xi 
appears, the informational weight is given by [8]: 

P(xi) = τ(i) / τ. (1) 

The obtained score represents a measure of significance for 

each feature. This means that the higher the score of the feature, 

the greater its relevance in class distinction [8,14,15]. 

B. Electroencephalographic Signals 

Brain is a complex part of the human body which plays an 

important role for controlling behavior of human body 

according to different stimuli. The study of the functional and 

cognitive behavior of the human brain has been an important 

area of medical research to find better diagnoses and treatments 

for brain related issues [3]. These studies can be performed by 

processing electrical brain activity, specially through 

computational modeling. The electrical brain activity is created 

by billions of interconnected neurons across different areas of 

the brain [16]. These neurons "act as information carriers 

between the body and brain" [3]. Voltage potential resulting 

from current flow in and around neurons can be recorded by 

electrodes placed on the scalp and reported as 

electroencephalographic (EEG) signals [16,17]. 

As a definition, "electroencephalography (EEG) is the non-

invasive measurement of the brain's electric fields" [17]. 

According to Keenan et al. [18], the EEG recording allows for 

data analysis from the frequency and amplitude domains, i.e., 

time and voltage. EEG signals are complex because they 

correspond to a mixture of information, physiological artifacts 

(eye movements, muscle movements, heartbeats, sweat) or 

technical artefacts (power supply line, electrode 

disconnection) [19]. 

Electroencephalography has applications in several domains 

such as health, education and, entertainment [16]. For example, 

EEG is decisive for in the diagnosis, treatment and monitoring 

of epileptic syndrome patients, and the study of sleep patterns, 

depth of anesthesia, and attention deficit hyperactivity disorder. 

There are also applications in cognitive and affective 

monitoring such as level of fatigue, mental workload, mood, or 

emotions, even stress control [16, 20, 21]. Outside the medical 

field, there are also applications such as BCI systems that allow 

the translation of EEG signal patterns into messages or 

commands for applications or interactive devices [16] with the 

aim of making human computer interaction more natural, 

especially for people with neuro-muscular disabilities [22]. 

C. Motor Imagery 

Motor imagery (MI) is defined by Mokiento et al. [23] as the 

mental performance of movements without by any kind of 

peripheral muscular activity. I.e., MI is a mental representation 

of movement without any body movement [4], e.g., opening or 

closing the left or right hand without executing it [24].  

The practice of MI requires the conscious activation of the 

same brain regions involved in the preparation and execution of 

movement. In addition, MI allows motor development and the 

learning of motor skills, including the gain of strength in 

specific muscle groups [4, 25]. 

MI has been applied in the sports context and positive effects 

have been reported in speed, performance accuracy, muscle 

strength, movements dynamics and motor skill performance. 

From the medical point of view, there have been positive results 

in rehabilitation in patients with neurological conditions, e.g., 

stroke, spinal cord injury, or Parkinson disease [4]. 

Computer science has studied motor imagery for the 

development of brain computer interface (BCI). A BCI system 

allows the communication between the brain and external 

devices without the involvement of peripheral nerves or 

muscles [26]. The most important BCI systems are the MI-

based BCI systems, which involves real-time applications such 

as contactless writing, prosthetic arms, virtual reality systems, 

gamming apps, wheelchairs, etc. [27].  

The major challenge in the design of MI-based BCI systems 

is the classification of EEG signal due to events such as eye 

blink, eye movement, muscular movements, teeth grinding, and 

heart rhythm interfere with the EEG signal recording resulting 

in a noisy signal [28]. Consequently, multiple frameworks have 

been developed in the literature with the aim of making EEG 

signal processing more efficient [28, 29]. 

 

Fig. 1. Sets of features, testors and typical testors [8] 

 

Fig. 2. Framework for typical testors analysis 
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III. FRAMEWORK 

This section of the document describes the framework used 

to perform the typical testors analysis applied to EEG signals 

with motor imagery. This framework aims to select a feature 

subset thar allows the correct discrimination of signals 

corresponding to the motor imagery of "open" and "close" the 

right hand. 

As shown in Figure 2, the process began with the EEG signal 

recording by means of the Emotiv EPOC+ EEG device with 14 

channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8, AF4), distributed according to the 10-20 electrode 

placement system, and a sampling rate of 128 samples 

per second. 

Six test subjects were used for signal sampling. For each one, 

six five-second samples were taken: three correspond to the 

intention to "open" and three more to "close" the hand. 

Additionally, the open-source application Cykit was used to 

record EEG signals in csv files, which were used as parameters 

for the following phases of the methodology. 

The second phase of the framework consisted of normalizing 

the data set since, although the fourteen features describe a 

brain electrical signal, there are small variations that may cause 

some features to be dominated by others. To avoid this issue, 

every feature was standardized using z-score normalization. In 

this way, the set of features has the same scale.  

The EEG signals are recorded with continuous values; 

therefore, the third phase of the framework was to apply a 

discretization. This, in addition, with the objective of making 

the typical testors analysis easier. 

Finally, the phases four and five properly involve a feature 

subset selection (FSS) process using the logical combinatorial 

approach by means of typical testor analysis (see section 2.1).  

This process used in data mining provides tools for the 

efficient reduction of the number of features describing objects, 

with the purpose of removing irrelevant features resulting in 

more stable representations.  

The results obtained from the application of the framework 

described above are shown in section 4 below. 

IV. RESULTS AND CONCLUSIONS 

As a result of phase 1, a database of 23,846 records described 

by the signals from the 14 electrodes of the Emotiv device was 

obtained. Specifically, the database included 12,190 records 

corresponding to the intention to open the hand and 11,656 to 

the intention to close the hand. 

As mentioned in the previous section, the data set was 

preprocessed through a normalization and discretization 

process. Once completed, a random sampling of 500 records per 

class was performed, ending the preprocessing a smaller data 

set that will be the parameter for the feature subset selection 

application, i.e., the computing of typical testors. 

The typical testors were calculated by means of a Python 

library of the exhaustive method using the Python library 

TestoresTipicos.py developed by Daniel Barajas, PhD student 

at Autonomous University of Aguascalientes, Mexico. The 

testors and typical testors found are shown in Table 1. As can 

be seen, the typical testors are represented as binary values 

where zero represents the absence of the feature, i.e., it does not 

 

Fig. 3. Emotiv EPOC+ device, 14 signals and 10-20 system [30] 

TABLE I 

TESTORS AND TYPICAL TESTORS 

Typical Testors 

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 

TABLE II 

INFORMATIONAL WEIGHT 

Feature IW Feature IW 

AF3 100% O2 100% 

F7 100% P8 100% 

F3 100% T8 100% 

FC5 100% FC6 100% 

T7 100% F4 0% 

P7 100% F8 100% 

O1 100% AF4 100% 
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provide relevant information and one means that the feature 

provides essential information.  

For this study, two testors were obtained, one of which is a 

typical testor. This typical testor is the minimum feature subset 

needed to distinguish objects of different classes ("open" and 

"close"). This typical testor is used to calculate the 

informational weight of each feature as described in section 2.1. 

Table 2 shows the informational weight calculated from the 

typical testor resulting from Table 1. Each percentage 

represents a measure of significance for each feature involved. 

In this sense, 13 of the 14 features are essential (100% of 

informational weight) to differentiate the two classes, while the 

feature F4 with 0% of informational weight presents no relevant 

information for this process. 

In this manner, the objective of reducing the dimensionality 

of the problem is achieved by describing the classes with a 

smaller number of features, making the representation of 

objects easier and as a support for classification systems. 

As future work, it is proposed to test the typical testor found 

by evaluating the performance of different machine learning 

algorithms such a as artificial neuronal networks or support 

vector machines. 
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