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Abstract—Differential evolution (DE) is a powerful algorithm
to find an optimal solution in real world problems. Nevertheless,
the binomial crossover parameter is an important issue for
the success of the algorithm. The proper selection of the
binomial crossover parameter depends on the problem at hand.
In this work, the effect of the binomial crossover in the
DE/Rand/1/bin, DE/Best/1/Bin and DE/Current to rand/1/Bin is
empirically studied and analyzed in the optimum design of the
kinematic and the dynamic parameters of links for a parallel
robot. The optimum design minimizes mechanical energy and
consequently reduces the energy provided by the actuator. Based
on the experimental results, the range of crossover parameter
values that properly explores the search space is obtained.
The importance of finding a proper crossover parameter is
highlighted. In addition, the optimal design shows a decrease in
the parallel robot mechanical energy compared with non-optimal
design.

Index Terms—Differential evolution, binomial

optimum design, mechatronic design.

Crossover,

I. INTRODUCTION

IFFERENTIAL Evolution (DE) has been proved to be
Da powerful evolutionary algorithm in many real-world
problems due to it being highly flexible to adapt to diverse
problems (nonlinear, discontinuos, etc.). It presents a superior
performance in the majority of applications and it is easy to
program. In [1], DE is used and modified to parameterise an
equivalent circuit model of lithium-ion batteries. A boundary
evolution strategy (BES) is developed and incorporated into
the DE to update the parameter boundaries during the
parameterizations. The method can parameterize the model
without extensive data preparation.The efficiency of the
approach is verified through two battery packs, one is an
8-cell battery module and the other from an electrical vehicle.
In [2], DE is used to search a global optimum solution for
ball bearings link system assembly weight with constraints
and mixed design variables. The implementation of the DE
algorithm into the particular mechanical design shows a robust
performance and obtains an efficient solution to the problem.
Beside, the comparisons with other algorithms confirm the
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effectiveness and the superiority of the DE in terms of
the quality of the obtained solution. In [3], DE solves
the dimensional synthesis of four and six-bar mechanisms
for path generation. In [4], the simulation-optimization
approach to determine the optimum location of groundwater
production wells is stated as an optimization problem. The DE
algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
technique is used to solve it. A significant conclusion is
that the simulation-optimization model consistently finds well
locations in less vulnerable areas of the model domain.
Nevertheless, in the previous works [1]-[4], the selection of
the parameter for the DE algorithm is a crucial factor to
find better solutions in such problems. An important open
issue is that the performance of the DE algorithm is highly
dependent on a mutation and crossover parameter [S]. The
binomial (uniform) crossover operator allows the generation
of a new individual, called trial vector, from the target and
mutant vectors, according to a uniform probability given by the
crossover constant CR € [0, 1]. Thus, the crossover constant
controls which and how many elements from the current
population are mutated. The right selection of the mutation and
crossover parameters is a very important factor to determine
the quality of the obtained solution and the efficiency of the
search [6]. The selection of the suitable parameters depends
on the specific problem and the previous experience of the
user [7]. Unfortunately, there is no methodology to determine
the mutation and crossover parameter. In this paper, an
empirical study of the binomial crossover parameters on three
different differential evolution variants based on the parallel
robot design with optimum mechanical energy is presented.
On the other hand, the demand on high performance
mechatronic systems has been a crucial factor to study
the mechatronic design approach [8]-[11]. The general
philosophy from the mechatronic design approach is to
create an integrated design environment which promotes
simultaneous design among mechanical engineering, electrical
engineering, control engineering and computer engineering.
Nevertheless, lately only the mechanical structure design
and the control system design have been simultaneously
integrated to achieve an optimal system performance due to the
complexity for integrating all areas. Therefore, mechatronic
system performance not only relies on its controller, but
also on its mechanical structure design. Some mechatronic
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Fig. 1. Schematic diagram of the parallel robot

design works establish optimization problems to integrate
both designs due to the non-linear dynamic/static nature.
Meta-heuristic algorithms have been used to solve such
problems due to the complex relationship in the mechatronic
design. Nevertheless, few works are related to the performance
of the meta-heuristic algorithm, which is an important issue
to be analyzed in order to improve the obtained solutions in
the mechatronic design framework.

In [12], a differential evolution algorithm with a constraint
handling mechanism is proposed to simultaneously solve the
design of the mechanical structure parameters of a parallel
robot and the design of the proportional-integral-derivative
control system required to perform a task in the Cartesian
space. In [13], an approach based on a differential
evolution algorithm to promote parametric reconfiguration
characteristics on a continuously variable transmission C.V.T.
and on a parallel robot optimal design is presented. In [14], a
hybrid evolutive-gradient optimization technique is proposed
with the purpose of finding the optimal solutions in the search
space of the synergetic design of a planar parallel robot and
its control system.

Considering the mechatronic design approach, in this paper
the mechanical structure of a parallel robot is designed
such that the control system is improved from the energy
consumption point of view. The parallel robot design is
stated as an optimization problem and is solved by using
three different variants of the DE algorithm. The selection
of the binomial crossover parameter is analyzed to show
the importance of adequately selecting such parameter in the
mechatronic design framework.

The paper is organized as follows: In Section 2 the
design variables, objective function and constraints of the
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optimization problem are described. The differential evolution
algorithm is explained in Section 3. The results obtained by
using the DE algorithm are described and discussed in Section
4 as well as the optimum design performance. Finally, in
Section 5 the conclusions are drawn.

II. ROBOT DESIGN APPROACH WITH OPTIMUM
MECHANICAL ENERGY

The present work states, based on an optimization problem,
the optimal dynamic and kinematic design parameters of
a parallel robot which reduce the mechanical energy in
a defined workspace and guarantee a dextrous workspace.
The defined workspace must be described by its vertices
(Ta, ;. 2d,,,) V4,7 = 1,2. In order to ensure a dextrous
workspace, the end-effector of the parallel robot must reach
three different desired orientations (described by &iM N
k = 1,2,3) for each vertex. The parallel robot has three
degree of freedom and the end-effector can move in the
X-Z plane, as is shown in Fig. 1, where ¢;, ¢;, §;, are the
joint angular position, joint velocity and joint acceleration.
The Cartesian coordinate and the angular position of the
manipulator end-effector are represented by (Z; ; x, Z; ;%) and
q@i,j’k, respectively. The dynamic parameters of the i-th link
are the mass m;, mass center length /., and inertia I,. The
kinematic parameter is the ¢-th link length [;.

The next sections describe the design variables, objective
function, and constraints involved in the optimization problem.

A. Design variable vector

The kinematic and dynamic parameters of the links are
considered as the design variables

Pm = [llal27l4al57m1a "'am57l617"'7lcsvfyla "'a’y5]T S nga
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1 BEGIN

2 G =0;

3 Create a random population ;¢ Vi =1,..., NP
4 Evaluate J(%;.c), 9(%i,q), Vi=1,..,NP

5 Do

6 For i =1to NP Do

7 Select randomly {r1 # r2 # r3} € Zq.

8 Jrand =randint(1, D)

9 For j =1to D Do

10 Mutation and crossover

11 End For

12 Evaluate J(t;,c+1), 9(Us,c+1)

13 If 4; ¢41 is better than Z; ¢ (Based on cum) Then
14 Ti,G+1 = Ui,G+1

15 Else

16 Ti,G+1 = Ti,G

17 End

18 G=G+1

19 While (G < Gpaz)

20 END

Fig. 2. The DE algorithm with the constraint handling mechanism

because these modify the mechanical structure of the parallel
robot. It is assumed that the length of the third link is I3 = Io,
such that it is not included in the design variable vector. In
addition, the joint angle configurations of the robot are chosen
as other design variables

Pq = [qli,j,k7q2i,_7’7k’ q3i,j,k]T € R36 cw

Vi,j = 1,2,k = 1,2,3, where the space W is defined
as W = {qlg € py}. Hence the design variable vector is
described in (1):

P = [Pm,pg)" € R™. (1)

B. Objective Function

One way to optimize the mechanical energy of the parallel
robot is to minimize the robot dynamic load. Then, the sum
of the Frobenious norm of the inertia matrix |M||r and the
potential energy V' of the parallel robot is proposed as the
objective function to be minimized. The objective function is
shown in (2). The potential energy and the inertia matrix can
be obtained in [15]:

J(p) = / M @)l + V(P ))dW. @)
w

C. Design constraints

The dextrous workspace of a robot is defined as the
set of all reachable points in the Cartesian space by
its end-effector with different orientations [15]. Thus, the
desired dextrous workspace is bounded by the vertices
(Ta, 42, ;)87 = 1,2 and is assumed that if the
end-effector reaches the four vertices with three different
orientations édi’j)ka‘ = 1,2,3, then any point inside
the workspace is reachable with at least three different
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TABLE I

DESIGN VARIABLE VECTOR BOUNDS
Design variable Min  Max
q1 [rad] 0 ?’l—g

q2 [rad] % 4%5

g3 [rad) -5 33%

li [m]i€{1,2,4,5}  0.01 0.5
m; i € {1,2,3} 0.1 0.35
my 0.3 0.35
ms 0.2 0.35

le, i € {1,2,...,5} 0 0.4

vi i€ {1,2,...,5} -7 T

orientations. Therefore a dextrous workspace is promoted.
According to the previous comments, the inequality constraint
described in (3) is chosen to guarantee a desired dextrous
workspace. The vertices of the desired dextrous workspace
(see Fig. 1) are chosen as (Za, , ,, Zd, , ,) = (0.2m, —0.23m),
(‘fdl,Z,k’Zdl,Q,k) = (0.2m,0.26m), (jd2,l,k7’§d2,l,k) =
(0.5m,0.26m) y (Tdyy s 2dys,) = (0.5m,—0.23m). An
additional point (Zg, , ,,Zd;,,) = (0.2m,0m) is chosen in
order to fulfill the three different orientations in the workspace.
The subindex k indicates the three different desired orientation
for each vertex. The orientations are defined as ¢g
—Zrad, ¢q, ,, = O0rad and ¢q

7,1

i s = 5rad Vi, j=1,2:

_ 2
) T, — (licosq, ;, — lacos gy, i W
: 3T 5 Js 2 +
g f ( =5 COS(q2i,j,k + q3i,j,k))

w

_ . . 2
f ( Zd; 0 — (l1 singy, ;, —lasings, ) AW +
w _l5 Sln(QQi,j,k + q3i,j,k))

b 2
%f ((z)d”k - (Q2w~1k + a3, — 71—)) dW —

1x1076<0 3)

Another important constraint in the parallel robot design
is to avoid the collision of links in the parallel structure.
Hence, the angular motion must be bounded. The inequality
constraints described in (4)-(5) are included to avoid collisions
between links, where Tolpjaee = 2% rad is the minimum

36
security angle between two links:

g2—13 : T0lpraz2 — G2, 5, + @1, 5, <0 4)
91425 G2, ;. — 1, ;. — T+ Tolpraz2 <0 (5)
The last constraints involve the bound in the design variables
vector p. Those are stated in (6)-(9), where the maximum and
minimum values are shown in Table I:

92637 : 0 < q1, ,;,, <7 —Tolpaz2 (6)
3

93849 : Tolpraze < q2, 5, < 5™~ Tolpraz2 (7N

95061 1 — T+ Tolpraxr < g3, 5, <7 —Tolyrazr — (8)

962580 ° Prarin < Pm < Pmaran )
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Nomenclature Variant
. 3 L T2 i ) S
rand/1/bin u; = { l’] + F(mJ :CJ ) if rand? (07 1) <CRor J Jrand
Ti, j otherwise
) best L T2 ; ) S
best/1/bin %:{iﬁ +F(ft —af?) if rand;(0,1) < CR or j = jrana
x; otherwise

current-to-rand/1/bin  u

@_{
J z
Zj

m; + K(z}® — x;) + F(x}

—x3?) ifrand;(0,1) < CR or j = jrana

otherwise

Fig. 3. DE variants with binomial crossover

D. Optimization problem statement

The optimization problem for the parallel robot design
consists in finding the optimal design parameter vector p*
which minimizes the mechanical energy of the robot (2)
subject to inequality constraints related to the design such as
to have a desired dextrous workspace (3), to avoid the collision
between links (4)-(5) and to limit the design variable vector
(6)-(9). Then, the optimization problem can be formally stated
as in (10)—(11):

Min J

10
Min (10)

subject to:

g(p) <0 € R%. (11

III. DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution (DE) algorithm is a stochastic,
population-based algorithm developed by Storn and Price [5],
designed for optimization problems in continuous search
space. DE is a real-valued number encoded evolutionary
strategy for global optimization. It has been shown to be
an efficient, effective and robust optimization algorithm. The
main advantages of the DE algorithm are: i) The DE is a
population based algorithm, i) No additional computation is
needed to define the search direction, such as, gradient vector,
Hessian matrix, 7ii) The DE can be used for different kinds
of optimization problems, such as, continuos, discontinuous,
etc. Nevertheless, the original DE algorithm lacks a constraint
handling mechanism. In this paper a constraint handling
mechanism is included into the DE algorithm [16]. The key
parameters are: NP - the population size that is the set of
individuals, C'R - the crossover constant that controls the
influence of the parent in the generation of the offspring
(higher values mean less influence of the parent), F' - the
weight applied to the influence of two of the three individuals
selected at random in order to generate the offspring (scaling
factor). The DE algorithm with the constraint handling
mechanism works as follows: the initial population vector
called parent is randomly generated. It is mutated and
recombined in order to produce another population vector
called mutant vector. The offspring vector will inherit features
from the mutant vector or from its parent which depends
on the uniform crossover. Finally, the new population for
the next generation is selected between the parent and the
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offspring vector taking into account the constraint handling
mechanism [16]:
— Any feasible solution is preferred to any infeasible
solution.
— Among two feasible solutions, the one having better
objective function value is preferred.
— Among two infeasible solutions, the one having smaller
constraint violation is preferred.

Once the new population is created, all process (mutation,
recombination and selection) are repeated until a pre-specified
termination criterion is satisfied. The DE algorithm with the
constraint handling mechanism (CHM) is described in Fig. 2.

Different DE variants with binomial crossover are used
in this paper. The differences among those variants are in
the recombination operator and in the way of selecting the
elements in the individual. A summarize of the DE variants
used in this paper is shown in Fig. 3.

IV. RESULTS AND DISCUSSION

The experiments are programmed in Matlab on a windows
platform on a PC with 2.8 GHz core i — 7 with 16GB of
RAM. The population size N P of the DE algorithm consists
of 36 individuals, the maximum generation is G 74, = 50000.
Five independent runs are carried out with ten different values
of crossover parameter CR = [0,0.2,...,0.9, 1].

In Tables II, III and IV, the empirical results of the
DE variants with different crossover factor for the optimum
parallel robot design are shown. The term J,,eqn, 0(J)mean
is the mean and the standard deviation of the best objective
function in the runs, Jp.s: is the best objective function found
in all runs, Time is the mean of the convergence time in the
runs and #gUF is the percentage from the five runs which
does not find feasible solution.

In Table II the empirical behavior of the Rand 1 Bin is
displayed. It it observed that the best performance function
values is J* = 0.0742 and it will be considered as the
optimum one. There are runs when CR € {[0,0.1,0.2],1}
that neither find feasible solution nor converge to the optimum
solution J*. Moreover, the individuals of those results are
dispersed in the search space as is observed in the standard
deviation. On the other hand, some runs with CR €
{[0.3,0.5],0.9} find feasible solution and only with CR = 0.9
the converge to the optimal solution is given (see J,eqn and
0(J)mean)- The results with CR € {[0.3,0.5]} indicate that
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TABLE 11
EMPIRICAL BEHAVIOR OF THE RAND 1 BIN ALGORITHM
Algorithm  CR Jmean o (J)mean JBest Time [hr]  #gUF
Rand 1 Bin  0.00 3.0417 1.2605 1.0550 0.32 100%
Rand 1 Bin  0.10 3.1331 0.4526 2.7439 0.34 100%
Rand 1 Bin 0.20 3.6704 0.9251 2.7961 0.33 100%
Rand 1 Bin  0.30 2.6865 1.7699 0.1040 0.33 80%
Rand 1 Bin  0.40 0.6523 0.9613 0.1200 0.33 20%
Rand 1 Bin  0.50 1.2072 2.4889 0.0808 0.33 20%
Rand 1 Bin 0.60 0.0744 0.0001 0.0742 0.33 0%
Rand 1 Bin 0.70 0.0742 0.0000 0.0742 0.33 0%
Rand 1 Bin 0.80 0.0745 0.0003 0.0742 0.34 0%
Rand 1 Bin  0.90 2.8655 1.8061 0.0742 0.33 80%
Rand 1 Bin 1.00 22.2395 17.6979 1.8977 0.33 100%
TABLE III
EMPIRICAL BEHAVIOR OF THE BEST 1 BIN ALGORITHM
Algorithm  CR  Jmean 0(J)mean JBest  Time [hr]  #gUF
Best 1 Bin 0.00 2.6063 1.1047 1.4722 0.33 100%
Best 1 Bin 0.10 1.8437 0.8270 1.2125 0.32 100%
Best 1 Bin 0.20 0.8046 0.6280 0.3204 0.32 100%
Best 1 Bin 0.30 1.1269 0.5443 0.4283 0.33 100%
Best 1 Bin 0.40 0.4054 0.0803 0.3312 0.32 100%
Best 1 Bin 0.50 0.8405 0.3533 0.4492 0.33 100%
Best 1 Bin 0.60 0.4034 0.3700 0.1189 0.32 100%
Best 1 Bin 0.70 0.1026 0.0924 0.0103 0.32 100%
Best 1 Bin 0.80 0.1035 0.1647 0.0069 0.32 100%
Best 1 Bin 0.90 0.3434 0.2422 0.0310 0.32 100%
Best 1 Bin 1.00 7.5324 5.8768 1.5052 0.32 100%
TABLE IV
EMPIRICAL BEHAVIOR OF THE CURRENT TO RAND 1 BIN ALGORITHM
Algorithm CR Jmean o(J)mean JBest Time [hr]  #gUF
Current to rand 1 Bin 0.00 2.7856 1.2458 1.0478 0.32 100%
Current to rand 1 Bin 0.10 0.9398 1.1931 0.0758 0.32 40%
Current to rand 1 Bin 0.20 3.6631 2.4611 0.0978 0.32 80%
Current to rand 1 Bin 0.30 3.6965 2.3941 0.0753 0.33 80%
Current to rand 1 Bin 0.40 4.6247 1.1783 2.9582 0.33 100%
Current to rand 1 Bin 0.50 4.0629 1.5545 2.6370 0.34 100%
Current to rand 1 Bin 0.60 3.6810 0.6680 2.7071 0.34 100%
Current to rand 1 Bin 0.70 4.2893 0.3206 3.9128 0.34 100%
Current to rand 1 Bin 0.80 6.1524 1.0623 4.7779 0.34 100%
Current to rand 1 Bin 0.90 4.5003 2.3716 0.9021 0.34 100%
Current to rand 1 Bin 1.00 27.2530 20.8946 7.8482 0.34 100%

in spite of producing feasible solutions the converge to the
optimum one is not reached, which means that suboptimal
solutions are found. The best results are given with CR €
[0.6,0.8] because they find feasible solution in all runs and
the convergence to the optimal solution is always reached in
all runs (see Jmean and o(J)mean)-

Tables IIT and IV show the Best 1 Bin and the Current to
rand 1 Bin behaviors, respectively. It is observed that the Best
1 Bin algorithm performs poorly. The convergence is towards
unfeasible solutions. This indicates that the use of the best
individuals in the mutation process accelerate the convergence
to unfeasible solutions and there is a lack of diversity in
the solution. On the other hand, Current to rand 1 Bin finds
local solutions near the optimum one with CR € {[0.1,0.3]}
and those solutions do not converge to a similar performance
function value (see the standard deviation).

http://dx.doi.org/10.17562/PB-51-6

In all DE variants, the convergence time of the results
is competitive among different crossover values. Clearly,
selection of the crossover parameter C'R is a very important
factor in the parallel robot design, because different values of
the crossover parameter are required to find feasible solutions
among the DE variants. The optimal empirical results indicate
that the best DE variant among those analyzed is the DE Rand
1 Bin with the best crossover probability 0.6%—0.8%. Hence
the influence of the mutant vector in the generation of the child
vector (offspring) must be larger than the parent (target) vec-
tor influence. A tradeoff in the selection between mutant and
parent vectors must be considered in order to obtain the best
solution, and it depends on the problem at hand. A suitable
selection of the crossover parameter promotes a better explo-
ration of the search space and the success of the DE variant
to find the optimal design parameters of the parallel robot.
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TABLE V
OPTIMUM PARAMETERS OF THE PARALLEL ROBOT
Mass [Kg] m1 = 0.3499 mo = 0.3499 ms3 = 0.3499 mg = 0.3 ms = 0.2
Length [m] l1 = 0.2263 I3 = 0.0765 l4 =0.3514 5 = 0.03
Mass center length [m] le;, = 0.1566 le, = 0.0546 le; = 0.1520 le, = 0.0783 les = 0.0095
Mass center angle [rad] 1 = —3.1415 v2 = 0.0842 v3 = 3.1215 ya = —3.1284  ~5 = —1.7150
TABLE VI
NON-OPTIMUM PARAMETERS OF THE PARALLEL ROBOT
Mass [Kg] m1 = 0.3 mo = 0.25 ms = 0.16 mg = 0.35 ms = 0.13
Length [m] 1 =.2 lo = 0.05 g =.25 ls = 0.072
Mass center length [m]  [.; =0.0524 ., =0.0114 ., =0.1 le, =0.0643 .5 = .0185
Mass center angle [rad] v1 =0 v2 =0 v3 =0 Y4 =T v5 =0
TABLE VII

Fig. 4. Parallel robot with optimum links

On the other hand, the optimum design parameter vector
is shown in Table V. In Fig. 4 the shape of the links of
the parallel robot with the optimum design parameter are
displayed. The shapes of the links are obtained by considering
the optimum design parameter vector and making empirical
Computer Aided Designs (CAD) in Solidworks until the
design fulfills the optimum design parameter vector.

In order to verify the mechanical energy of the optimum
parallel robot design, simulation results were used. In
this case, a circle in the X-Z plane and a sinusoidal
signal are chosen as the desired position and orientation
to be followed by the end-effector of the parallel robot,
respectively. The desired trajectory is shown in (12)-(14). A
proportional-integral-derivative (PID) control is selected for
this goal:

X4 = 0.35 + 0.1 cos(0.6283¢) (12)
Z4 = 0.1sin(0.6283¢t) (13)
¢4 = 0.0872sin(2.0943t) (14)

The PID gains are selected by a trial and error procedure.
Those gains are: k,, = 20, k;; = 5, kg, = 3, kp, = 15.8,
ki, = 5.4, kg, = 1.1, kp, = 0.8, ks, = 0.8, kg, = 0.005.
In Fig. 5 the trajectory tracking of the end-effector is given.
It is observed that the end-effector trajectory is in the desired
workspace (bounded by a squared continuous line) and the PID
control system stabilizes the end-effector in the trajectory. The
control signal (applied torque) to follow the desired trajectory
is shown in Fig. 6. It is observed, after the first second, the
control torque is low, such that, the mechanical energy of the
parallel robot is low too.

Polibits (51) 2015

COMPARISON OF THE CONTROL SIGNAL NORM WITH BOTH APPROACHES

Design approach _ [Jua ] fuzll  ua]
Optimum 1.1999  0.3245 0.1293
Non optimum 33.0886 0.7917 1.0584

In order to compare the proposed optimum design of the
parallel robot, comparative results with a non optimum design
are carried out. The non optimum design parameters are
chosen with the consideration that the total mass of the parallel
robot is smaller than the total mass of the optimum design
of the parallel robot. Simulation results are performed with
both designs and the comparative results are carried out by
analyzing the norm of the control signal of the tracking
trajectory. The non optimum design are chosen accordingly
to Table VI and its PID gains are proposed as: kp, = 130,
ki, = 35, kq, = 3, kp, = 558, ki, = 5.4, kg, = 1.1,
kp, = 0.8, k;; = 0.8, kg, = 0.005.

In Table VII the norm of the control signals are shown. It
is observed that the norm of the control signal in the optimum
design is smaller than the non optimum design, in spite of
having more total mass. Hence, the optimum mechanical
structure of the parallel robot minimizes the mechanical
energy, resulting that the torque provided by the control system
is reduced. Then, the proposed design approach promotes the
mechatronic design approach because the optimum mechanical
structure improves the energy efficiency of the control system.

V. CONCLUSIONS

In this work, an optimum design approach for a parallel
robot is stated as an optimization problem. This approach
finds the dynamic and kinematic parameters of links that fulfill
with a structure with less mechanical energy. Hence, as a
consequence, the mechanical structure improves the control
system behavior w.r.t. the energy consumption in the trajectory
tracking.

The main highlights in the selection of the crossover
parameter in DE variants are:

— The DE best 1 bin presents a high premature convergence

to unfeasible solution in spite of the crossover parameter
selection.
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Fig. 5. Trajectory tracking of the optimum parallel robot with the PID control system

— The DE current to Rand 1 Bin converge to a suboptimal
solution near the optimum one and it highly depends on
the crossover parameter selection.

— The DE Rand 1 Bin presents a good convergence to the
optimal solution with CR = [0.6,0.8]. It promotes a
better exploration of the search space without converging
to local minima and without exhaustive exploration.

— The success of the DE variant to solve the optimum
design problem effectively depends on the selection of
the crossover parameter and is related to the optimization
problem.
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