
The Multiple Knapsack Problem Approached
by a Binary Differential Evolution Algorithm

with Adaptive Parameters
Leanderson André and Rafael Stubs Parpinelli

Abstract—In this paper the well-known 0-1 Multiple Knapsack
Problem (MKP) is approached by an adaptive Binary Differential
Evolution (aBDE) algorithm. The MKP is a NP-hard optimization
problem and the aim is to maximize the total profit subjected
to the total weight in each knapsack that must be less than or
equal to a given limit. The aBDE self adjusts two parameters,
perturbation and mutation rates, using a linear adaptation
procedure that changes their probabilities at each generation.
Results were obtained using 11 instances of the problem with
different degrees of complexity. The results were compared using
aBDE, BDE, a standard Genetic Algorithm (GA) and its adaptive
version (aGA), and an island-inspired Genetic Algorithm (IGA)
and its adaptive version (aIGA). The results show that aBDE
obtained better results than the other algorithms. This indicates
that the proposed approach is an interesting and a promising
strategy to control the parameters and for optimization of
complex problems.

Index Terms—Adaptive parameter control, binary differential
evolution, multiple knapsack problem, evolutionary computation.

I. INTRODUCTION

THE 0-1 Multiple Knapsack Problem (MKP) is a
binary NP-hard combinatorial optimization problem that

consists in given a set of items and a set of knapsacks, each
item with a mass and a value, determine which item to include
in which knapsack. The aim is to maximize the total profit
subjected to the total weight in each knapsack that must be
less than or equal to a given limit.

Different variants of the MKP can be easily adapted to
real problems, such as, capital budgeting, cargo loading and
others [1]. Hence, the optimization of resource allocation is
one major concern in several areas of logistics, transportation
and production [2]. In this way, the search for efficient methods
to achieve such optimization aims to increase profits and
reduce the use of raw materials.

According to the size of an instance (number of items
and number of knapsacks) of the MKP, the search space
can become too large to apply exact methods. Hence, a
large number of heuristics and metaheuristics have been
applied to the MKP. Some examples are the modified binary

Manuscript received on January 20, 2015, accepted for publication on
March 8, 2015, published on June 15, 2015.

The authors are with the Graduate Program in Applied Computing, De-
partament of Computer Science, State University of Santa Catarina, Joinville,
Brazil (e-mail: leanderson.andre@gmail.com, rafael.parpinelli@udesc.br).

particle swarm optimization [3], the binary artificial fish
swarm algorithm [4], and the binary fruit fly optimization
algorithm [5]. In this work, it is investigated the performance
of an adaptive Differential Evolution algorithm designed for
binary problems.

The Differential Evolution (DE) algorithm is an Evolu-
tionary Algorithm which is inspired by the laws of Darwin
where stronger and adapted individuals have greater chances to
survive and evolve [6]. Evolutionary Algorithms simulate the
evolution of individuals through the selection, reproduction,
crossover and mutation methods, stochastically producing
better solutions at each generation [7]. In this analogy, the
individuals are candidate solutions to optimize a given problem
and the environment is the search space.

It is well documented in the literature that DE has a
huge ability to perform well in continuous-valued search
spaces [8]. However, for discrete or binary search spaces
some adaptations are required [9]. Hence, this paper applies
a Binary Differential Evolution (BDE) algorithm that is able
to handle binary problems, in particular the 0-1 MKP. The
BDE algorithm was first applied in [10] for the 0-1 MKP and
the results obtained were promising. BDE consists in applying
simple operators (crossover and bit-flip mutation) in candidate
solutions represented as binary strings. In this work several
different instances are approached.

It is known that the optimum values of the control
parameters of an algorithm can change over the optimization
process [11], directly influencing the efficiency of the method.
As most metaheuristic algorithms, DE also has some control
parameters to be adjusted. The parameters of an algorithm
can be adjusted using one of two approaches: on-line or
off-line. The off-line control, or parameter tuning, is performed
prior to the execution of the algorithm. In this approach
several tests are performed with different parameter settings
in order to find good configurations for the parameters. In
the on-line control, or parameter control, the values for the
parameters change throughout the execution of the algorithm.
The control of parameters during the optimization process has
been consistently used by several optimization algorithms and
applied in different problem domains [12], [13], [14], [15],
[16]. In this way, a method to adapt the control parameters
(crossover and mutation rates) of DE is applied. The aim is to
explore how effective the on-line control strategy is in solving

47 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-7 • pp. 47–54

IS
S

N
 2395-8618

Algorithm 1 Binary Differential Evolution (BDE)
1: Parameters : DIM,POP, ITER,PR,MUT
2: Generate initial population randomly: −→x i ∈ {0, 1}DIM

3: Evaluate initial population with the fitness function f(−→x i)
4: while termination criteria not met do
5: for i = 1 to POP do
6: Select a random individual:

k ← random(1, POP), with k 6= i
7: Select a random dimension:

jrand ← random(1, DIM)
8: −→y ← −→x i

9: for j = 1 to DIM do
10: if (random(0, 100) < PR) or (j == jrand) then
11: if (random(0, 100) < MUT) then
12: BitFlip(yj) {Mutation}
13: else
14: yj ← xkj {Crossover}
15: end if
16: end if
17: end for
18: Evaluate f(−→y)
19: if (f(−→y) > f(−→x i)) then {Greedy Selection}
20: −→x i ← −→y
21: end if
22: end for
23: Find current best solution −→x ∗

24: end while
25: Report results

the MKP.
In the following, Section II provides an overview of

the Multiple Knapsack Problem. The Binary Differential
Evolution algorithm is presented in Section III and the adaptive
control parameter mechanism is presented in Section III-A.
Section IV gives a brief description of Genetic Algorithms
and island-inspired Genetic Algorithm both used in the
experiments. The experiments and results are presented in
Sections V and VI, respectively. Section VII concludes the
paper with final remarks and future research.

II. MULTIPLE KNAPSACK PROBLEM

The 0-1 Multiple Knapsack Problem (MKP) is a
well-known NP-hard combinatorial optimisation problem and
its goal is to maximize the profit of items chosen to fulfil a
set of knapsacks, subjected to constraints of capacity [2]. The
MKP consists of m knapsacks of capacities C1, C2, ...Cm,
and a set of n items I = {I1, I2, ...In}. The binary variables
Xi(i = 1, ..., n) represent selected items to be carried in m
knapsacks. The Xi assumes 1 if item i is in the knapsack and
0 otherwise. Each item Ii has an associated profit Pi ≥ 0
and weight Wij ≥ 0 for each knapsack j. The goal is to find
the best combination of n items by maximizing the sum of
profits Pi multiplied by the binary variable Xi, mathematically

represented by Equation 1. Their constraints are the capacity
Cj ≥ 0 of each knapsack. Therefore, the sum of the values
of Xi multiplied by Wij must be less than or equal to Cj ,
represented mathematically by Equation 2.

max

(
n∑

i=1

(Pi ×Xi)

)
(1)

m∑
j=1

(Wij ×Xi) ≤ Cj (2)

A binary exponential function with exponent n assembles
all possibilities for n items respecting the capacity of each
knapsack m. Hence, the MKP search space depends directly
on the values of n and m. Therefore, to find the optimal
solution should be tested all 2n possibilities for each knapsack
m, i.e., m × 2n possibilities. Depending on the instance, the
search space can become intractable by exact methods. In
such cases, metaheuristic algorithms are indicated. Hence, the
Binary Differential Evolution is an interesting algorithm to be
applied to solve the MKP. The algorithm was designed for
binary optimization and is shown in next section.

III. BINARY DIFFERENTIAL EVOLUTION

The Binary Differential Evolution (BDE) [10] is a
population-based metaheuristic inspired by the canonical
Differential Evolution (DE) [6] and is adapted to handle binary
problems. Specifically, the BDE approach is a modification of
the DE/rand/1/bin variant.

In BDE, a population of binary encoded candidate solutions
with size POP interact with each other. Each binary
vector −→x i = [xi1, xi2...xiDIM ,] of dimension DIM is a
candidate solution of the problem and is evaluated by an
objective function f(−→x i) with i = [1, ..., POP]. As well
as the canonical DE, BDE combines each solution of the
current population with a randomly chosen solution through
the crossover operator. However, the main modification to
the canonical DE, besides the binary representation, is the
insertion of a bit-flip mutation operator. This modification
adds to the algorithm the capacity to improve its global search
ability, enabling diversity.

The pseudo-code of BDE is presented in Algorithm 1. The
control parameters are the number of dimensions (DIM), the
population size (POP), the maximum number of generations
or iterations (ITER), the perturbation rate (PR) and the
mutation rate (MUT)(line 1). The algorithm begins creating
a random initial population (line 2) where each individual
represents a point in the search space and is a possible solution
to the problem. The individuals are binary vectors that are
evaluated by a fitness function (line 3). An evolutive loop
is performed until a termination criteria is met (line 4). The
termination criteria can be to reach the maximum number of
iterations ITER. The evolutive loop consists in creating new
individuals through the processes of perturbation (mutation

48Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-7

Leanderson André and Rafael Stubs Parpinelli
IS

S
N

 2395-8618

Algorithm 2 Genetic Algorithm (GA)
1: Parameters : DIM,POP, ITER,CR,MUT,ELI
2: Generate initial population randomly: −→x i ∈ {0, 1}DIM

3: Evaluate initial population with the fitness function f(−→x i)
4: while termination criteria not met do
5: Find current best solution −→x ∗

6: if (ELI) then
7: Copy the best individual −→x ∗ to next generation
8: end if
9: for i = 1 to (POP / 2) do

10: Select two individuals k and y with tournament
selection and k 6= y

11: if (random(0, 100) < CR) {Uniform Crossover}
then

12: for j = 1 to DIM do
13: if (random(0, 100) < 50) then
14: offspring aj ← xyj
15: offspring bj ← xkj
16: else
17: offspring aj ← xkj
18: offspring bj ← xyj
19: end if
20: end for
21: end if
22: for j = 1 to DIM do
23: if (random(0, 100) < MUT) then
24: BitFlip(offspring aj) {Mutation}
25: end if
26: if (random(0, 100) < MUT) then
27: BitFlip(offspring bj) {Mutation}
28: end if
29: Add new individuals to next generation
30: end for
31: end for
32: Evaluate new population with the fitness function

f(−→x i)
33: end while
34: Find current best solution −→x ∗

35: Report results

and crossover) (lines 6-17), evaluation of the objective function
(line 18), and a greedy selection (lines 19-21).

Inside the evolutive loop, two random indexes k and jrand
are selected at each generation. k represents the index of an
individual in the population and must be different from the
current index of individual i (line 6). jrand represents the index
of any dimension of the problem (line 7).

In line 8, the individual −→x i is copied to a trial individual
−→y . Each dimension of the trial individual is perturbed (or
modified) accordingly to the perturbation rate or if the index
j is equal to index jrand (line 10). The equality ensures that
at least one dimension will be perturbed. The perturbation is
carried out by the bit-flip mutation using its probability (line
11-12) or by the crossover operator (line 14).

Algorithm 3 Island Inspired Genetic Algorithm (IGA)
1: Parameters : DIM,POP, ITER,CR,MUT
2: Generate initial population randomly: −→x i ∈ {0, 1}DIM

3: Evaluate initial population with the fitness function f(−→x i)
4: while termination criteria not met do
5: for i = 1 to POP do
6: Select an individual k, with tournament selection
7: −→y ← −→x k

8: if (random(0, 100) < CR) {Uniform Crossover}
then

9: for j = 1 to DIM do
10: if (random(0, 100) < 50) then
11: yj ← xij
12: end if
13: end for
14: end if
15: for j = 1 to DIM do
16: if (random(0, 100) < MUT) then
17: BitFlip(yj) {Mutation}
18: end if
19: end for
20: Evaluate f(−→y)
21: if (f(−→y) > f(−→x k)) then {Greedy Selection}
22: −→x k ← −→y
23: end if
24: end for
25: Find current best solution −→x ∗

26: end while
27: Report results

From the new population of individuals the best solution
−→x ∗ is found (line 23) and a new generation starts. Algorithm 1
terminates reporting the best solution obtained −→x ∗ (line 25).

A. Adaptive Binary Differential Evolution

The Adaptive Binary Differential Evolution (aBDE)
algorithm aims to control two parameters: perturbation (PR)
and mutation (MUT) rates. To achieve that, a set of discrete
values is introduced for each of parameter. Once defined a
set of values for each parameter, a single value is chosen at
each generation through a roulette wheel selection strategy.
The probability of choosing a value is initially defined equally
which is subsequently adapted based on a criteria of success. If
a selected value for a parameter yielded at least one individual
in generation t+ 1 better than the best fitted individual from
generation t, then the parameter value has a mark of success.
Hence, if at the end of generation t + 1 the parameter value
was successful, its probability is increased with an α value,
otherwise, it remains the same. The α is calculated by a linear
increase as shows Equation 3:

α = min+

(
max−min
ITER

× i
)
, (3)

49 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-7

The Multiple Knapsack Problem Approached by a Binary Differential Evolution Algorithm with Adaptive Parameters
IS

S
N

 2395-8618

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600 700 800 900 1000

V
a

lu
e
s

Generations

1

3

5

10

15

Fig. 1. Adaptive probabilities for mutation rate

where ITER is the number of iterations, i is the current
iteration, max is the maximum value of α and min is
the minimum value of α. After adjusting the probabilities,
the values are normalized between 0 and 1. To ensure a
minimum of chance for each value of parameters, a β value
is established.

IV. DESCRIPTION OF GA AND IGA

This section gives a brief description of two algorithms
employed in the experiments.

A. Genetic Algorithm

The Genetic Algorithms (GA) are one of the best known and
most used algorithms from the Evolutionary Computation field
and was proposed by John Holland in 1975 [7]. The inspiration
behind GA is based on Darwin’s theory of evolution of species.
In nature, individuals from different populations compete to
survive. According to natural selection, stronger individuals
and better adapted to the environment have a greater chance
to survive and will continue their species. Thus, GA use the
concepts of evolution as an intelligent process for optimization
in finding good solutions.

The pseudo-code is presented in Algorithm 2. The control
parameters are the number of dimensions (DIM), the
population size (POP), the maximum number of generations
or iterations (ITER), the crossover rate (CR), the mutation
rate (MUT) and elitism (ELI) (line 1). The algorithm begins
creating a random initial population (line 2) where each
individual represents a point in the search space and is a
possible solution to the problem. The individuals are binary

vectors that are evaluated by a fitness function (line 3). An
evolutive loop is performed until a termination criteria is
met (line 4). The termination criteria can be to reach the
maximum number of iterations ITER. From the population
of individuals the best solution −→x ∗ is found (line 5). If
elitism is applied, the best individual is placed in the next
generation without any change (line 7). The evolutive loop
consists in creating new individuals through the operators of
crossover and mutation (lines 10-30), the generation of the
new population (line 32) and the evaluation of the objective
function (line 33).

Inside the evolutive loop, two individuals k and y are
selected at each generation by tournament selection (line 10).
The individuals are recombined accordingly to the crossover
rate (line 11-21). Finally, it is applied the bit-flip mutation
using its probability (line 22-30).

The new population is generated from the temporary
population t (line 32), is evaluated by a fitness function
(line 33) and a new generation starts. Algorithm 2 terminates
reporting the best solution obtained −→x ∗ (line 35-36).

B. Island-inspired Genetic Algorithm

The Island-inspired Genetic Algorithm [17] is a meta-
heuristic that uses one population of individuals as islands
(island-model GA). This approach uses only one population
where each individual is considered to be an island itself.

The pseudo-code of IGA is presented in Algorithm 3. The
control parameters are the number of dimensions (DIM), the
population size (POP), the maximum number of generations
or iterations (ITER), the crossover rate (CR) and the
mutation rate (MUT)(line 1). The algorithm begins creating

50Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-7

Leanderson André and Rafael Stubs Parpinelli
IS

S
N

 2395-8618

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 100 200 300 400 500 600 700 800 900 1000

V
a

lu
e
s

Generations

20

30

40

50

60

Fig. 2. Adaptive probabilities for perturbation rate

a random initial population (line 2) where each individual
represents a point in the search space and is a possible solution
to the problem. The individuals are binary vectors that are
evaluated by a fitness function (line 3). An evolutive loop
is performed until a termination criteria is met (line 4). The
termination criteria can be to reach the maximum number of
iterations ITER. The evolutive loop consists in creating new
individuals through the operators of crossover and mutation
(lines 6-19), the evaluation of the objective function (line 20),
and a greedy selection (lines 21-23).

Inside the evolutive loop, an individual k is selected by
tournament selection to where individual i must migrate
(line 6). The migration process indicates that individual i
will be able to exchange information with individual k. The
interaction is made using an uniform crossover that produces
one offspring. In line 8, the individual −→x k is copied to a
trial vector −→y . The trial vector is recombined with individual
i accordingly to the crossover rate (line 8-13). Finally, it is
applied the bit-flip mutation using its probability (line 15-18).

From the new population of individuals the best solution
−→x ∗ is found (line 25) and a new generation starts. Algorithm 3
terminates reporting the best solution obtained −→x ∗ (line 27).

V. COMPUTATIONAL EXPERIMENTS

For the experiments, 11 instances for the MKP were used1.
Table I shows the instance reference, the optimum value,
the number of knapsacks, and the number of items (or
dimensions), respectively. For each instance, 100 independent
runs were performed with randomly initialized populations.

1Available at: www.cs.nott.ac.uk/˜jqd/mkp/index.html

The algorithms were developed using ANSI C language
and the experiments were run on an AMD Phenom II X4
(2.80GHz) with 4GB RAM, under Linux operating system.

TABLE I
BENCHMARK INSTANCES FOR THE MKP

Instance Optimum Value Knapsacks Items
PB1 3090 4 27
PB2 3186 4 34
PB4 95168 2 29
PB5 2139 10 20
PB6 776 30 40
PB7 1035 30 37
PET7 16537 5 50
SENTO1 7772 30 60
SENTO2 8722 30 60
WEING8 624319 2 105
WEISHI30 11191 5 90

The parameters used for the BDE algorithm are: population
size (POP = 100), number of iterations (ITER = 1, 000),
perturbation rate (PR = 50%), mutation rate (MUT = 5%).

The Genetic Algorithm (GA) and the Island-inspired
Genetic Algorithm (IGA) use tournament selection, uniform
crossover and elitism of one individual. For both algorithms
the parameters are: population size (POP = 100), number
of iterations (ITER = 1, 000), tournament size (T = 3),
crossover rate (CR = 80%), mutation rate (MUT = 5%),
and elitism of one individual.

The strategy to adapt parameters is applied in all algorithms,
BDE, GA and IGA, leading to its adaptive versions aBDE,
aGA, and aIGA, respectively. The parameters adjusted are
PR and MUT for aBDE, and CR and MUT for aGA
and aIGA. Thus, the set of values for PR was defined as

51 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-7

The Multiple Knapsack Problem Approached by a Binary Differential Evolution Algorithm with Adaptive Parameters
IS

S
N

 2395-8618

 15000

 15200

 15400

 15600

 15800

 16000

 16200

 16400

 16600

 0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Generations

Fig. 3. Convergence graph for instance PET7

{20, 30, 40, 50, 60} to aBDE, and the set of values for CR
was defined as {50, 60, 70, 80, 90} to aGA and aIGA. MUT
was defined as {1, 3, 5, 10, 15} for all algorithms.

A range between [0.01, 0.1] was chosen for α and the β
parameter was set to 0.01. The number of function evaluations
is the same for all algorithms, resulting in a maximum of
100,000 function evaluations. All choices for the values of
parameters were made empirically.

In all approaches, infeasible individuals in the population
are fixed by dropping random items from the knapsack until
feasibility is obtained. Feasibility of individual is verified
inside the objective function as proposed in [18].

VI. RESULTS AND ANALYSIS

Table II presents the average and the standard deviation
of the best result (Avg±Std) obtained in all runs for
each algorithm, the average number of objective function
evaluations (Eval) required to achieve the optimum value,
the success rate (Success) calculated as the percentage that
the algorithm reached the optimum value, and the dominance
information (P) indicating which algorithms are better than
the others concerning both the average best result and the
average number of function evaluations. If more than one
algorithm is marked in the same benchmark means that they
are non-dominated (neither of them are better than the other in
both criteria). Also, for each algorithm, the last line (Average)
shows the average of function evaluations and the average of
success rate for all benchmarks. Best results are highlighted
in bold.

Analyzing the results obtained by GA and IGA it is possible
to notice that IGA achieve better results (success rate) in 8
instances (PB1, PB2, PB4, PB6, PB7, PET7, SENTO1,
and SENTO2), except for PB5. This gain can be explained
by the model used for exchange information that slows down

the premature convergence of the algorithm allowing it to
better explore the space of solutions.

Analyzing the results obtained by IGA and BDE we can
notice that BDE achieved better results (success rate) in
3 instances (SENTO2, WEING8, and WEISH30), and
equivalent results in other 3 instances (PB4, PB6, and
SENTO1). In fact, the BDE obtained best results in instances
with higher complexity. Also, the average success rate of BDE
is better than the average success rate of IGA. This can be
explained by the diversification power that BDE employs in
its operators.

Comparing the results obtained by BDE and its adaptive
version, aBDE, we can notice that the results (success rate)
were even better when using the adaptive parameter control
strategy for almost all instances except for SENTO1 and
WEISHI30 and equal for PB4. Also, the average number
of function evaluations decreased when using the parameter
control strategy. This improvement can be explained by the
adaptive choices for the values of parameters during the
optimization process.

Analyzing the effectiveness of the adaptive parameter
control strategy, it is possible to notice that aBDE, aIGA,
and aGA obtained better success rates for the majority of the
instances when compared to its non-adaptive versions. The
improvement is boosted in aBDE which has a differentiated
diversification mechanism.

Using the dominance information (P) from Table II, it is
possible to notice that the Differential Evolution algorithm
with adaptive parameter control, aBDE, is present in the
non-dominated set in 8 out of 11 instances. This indicates that
aBDE is robust concerning both criteria. The aBDE algorithm
is dominated in instances PB2, PB5 and SENTO1.

In order to illustrate the behavior of the adaptive control
strategy, Figures 1 and 2 show the adaptation of values

52Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-7

Leanderson André and Rafael Stubs Parpinelli
IS

S
N

 2395-8618

TABLE II
RESULTS OBTAINED BY ALL ALGORITHMS FOR EACH INSTANCE.

Benchmark GA aGA
Avg±Std Eval Success P Avg±Std Eval Success P

PB1 3085.26±10.78 34995.18 82.00% 3086.98±8.17 45491.35 86.00%
PB2 3131.08±40.44 89051.75 17.00% 3142.10±32.96 91786.79 15.00%
PB4 95071.01±551.51 9251.30 97.00% 94956.92±769.63 21115.21 91.00%
PB5 2138.15±3.71 29852.48 95.00% x 2136.62±5.90 33728.52 86.00%
PB6 769.57±10.49 51759.22 68.00% 770.64±10.04 46877.06 72.00%
PB7 1026.34±6.92 92079.76 17.00% 1024.34±7.98 92400.93 12.00%
PET7 16428.88±47.93 100100.00 0.00% 16451.34±50.91 98634.27 6.00%
SENTO1 7640.90±50.75 100100.00 0.00% 7678.39±80.06 95481.81 14.00%
SENTO2 8620.05±37.74 100100.00 0.00% 8649.13±50.80 99942.68 1.00%
WEING8 566282.95±12678.93 100100.00 0.00% 583830.05±20597.21 100100.00 0.00%
WEISHI30 10824.70±92.10 100100.00 0.00% 10962.33±189.93 99851.97 3.00%
Average 73408.15 34.18% 75037.32 35.09%

Benchmark IGA aIGA
Avg±Std Eval Sucess Pareto Avg±Std Eval Sucess Pareto

PB1 3090.00±0.00 13912.02 100.00% x 3090.00±0.00 17559.92 100.00% x
PB2 3173.19±17.20 74237.64 51.00% 3173.47±18.83 72674.13 54.00% x
PB4 95168.00±0.00 7231.01 100.00% x 95168.00±0.00 8102.60 100.00% x
PB5 2137.13±5.32 30514.89 89.00% 2136.79±5.72 34976.06 87.00%
PB6 775.86±1.39 12657.32 99.00% 775.89±1.09 12355.48 99.00%
PB7 1034.32±2.22 42747.69 83.00% x 1034.12±2.62 43877.91 78.00%
PET7 16529.44±10.97 80221.17 60.00% 16530.22±10.11 76512.13 64.00%
SENTO1 7771.64±2.06 47496.00 97.00% x 7770.61±3.98 39808.61 89.00%
SENTO2 8717.77±5.71 87966.44 49.00% 8718.85±4.54 71824.83 55.00%
WEING8 612963.36±2750.51 100100.00 0.00% 623388.14±1432.22 72758.08 65.00%
WEISH30 11159.03±13.71 100100.00 0.00% 11190.72±1.02 51125.45 93.00%
Average 54289.47 66.18% 45597.74 80.36%

Benchmark BDE aBDE
Avg±Std Eval Sucess P Avg±Std Eval Sucess P

PB1 3089.07±4.96 14104.50 96.00% 3089.54±3.52 13074.74 98.00% x
PB2 3144.55±28.43 91164.94 14.00% 3165.17±24.20 78323.80 40.00%
PB4 95168.00±0.00 4672.21 100.00% x 95168.00±0.00 5584.56 100.00% x
PB5 2135.60±6.80 32052.98 80.00% 2136.79±5.72 26676.96 87.00%
PB6 775.86±1.39 7200.84 99.00% 776.00±0.00 6865.16 100.00% x
PB7 1034.12±2.57 35502.17 77.00% 1034.47±1.89 33620.13 82.00% x
PET7 16524.58±19.07 65795.81 56.00% 16529.52±15.30 64335.20 71.00% x
SENTO1 7771.44±3.53 17091.08 97.00% x 7770.66±4.61 25110.83 91.00%
SENTO2 8720.37±3.49 50493.94 67.00% 8721.17±2.37 42285.83 78.00% x
WEING8 624062.37±770.56 55705.08 86.00% 624241.30±457.11 34517.30 95.00% x
WEISHI30 11191.00±0.00 33645.37 100.00% x 11190.84±0.78 26192.99 96.00% x
Average 37038.99 79.27% 32417.04 85.27%

for the mutation and perturbation rates, respectively. Also, a
convergence plot is show in Figure 3. All three figures were
acquired during a successful run of aBDE algorithm using
instance PET7. For other instances, the behavior observed
was similar.

In the first generation of the algorithm, all possibilities for
the values of parameters have the same probabilities to be
chosen. Through generations, these probabilities can change
according to their success of creating better solutions, as
explained in Section III-A. From Figures 1 and 2 one can note
that in earlier generations, the probabilities of the values for
each parameter change more often than in latter generations.

This can be explained by the diversity loss that occurs
during the optimization process, as can be seen in the
convergence plot (Figure 3). The adaptive method is able to
better explore the values of parameters at the beginning of the
optimization process, favoring the best values until its end.

VII. CONCLUSION

In this work, a Binary Differential Evolution algorithm
with adaptive parameters was applied to the well-known 0-1
MKP. The Adaptive Binary Differential Evolution (aBDE)
algorithm aims to control two parameters: perturbation (PR)
and mutation (MUT) rates. To achieve that, a set of discrete
values is introduced for each of parameter and it is updated
based on a criteria of success. If a selected value for a
parameter yielded at least one individual in generation t + 1
better than the best fitted individual from generation t, then
the parameter value has a mark of success. Hence, if at the
end of generation t + 1 the parameter value was successful,
its probability is increased, otherwise, it remains the same.

Results obtained using 11 instances of the problem strongly
suggest that the adaptive selection strategy has advantages
when compared with fixed values. This advantages can be seen

53 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-7

The Multiple Knapsack Problem Approached by a Binary Differential Evolution Algorithm with Adaptive Parameters
IS

S
N

 2395-8618

in the results (average success rate and average number of
function evaluations) when comparing aBDE with the other
algorithms. This indicates that the proposed approach is an
interesting and promising strategy for optimization of complex
problems.

As future work, we intend to apply the adaptive method
in other metaheuristics. Also, it is planed to investigate the
performance of the aBDE in other real-world problems.

ACKNOWLEDGMENT

Authors would like to thank Fundação de Amparo a
Pesquisa e Inovação do Estado de Santa Catarina (FAPESC)
by the financial support, as well as to State University of Santa
Catarina (UDESC).

REFERENCES

[1] M. Vasquez, J.-K. Hao et al., “A hybrid approach for the 0-1
multidimensional knapsack problem,” in IJCAI, 2001, pp. 328–333.

[2] A. Freville, “The multidimensional 0–1 knapsack problem: An
overview,” European Journal of Operational Research, vol. 155, no. 1,
pp. 1–21, 2004.

[3] J. C. Bansal and K. Deep, “A modified binary particle swarm
optimization for knapsack problems,” Applied Mathematics and
Computation, vol. 218, no. 22, pp. 11 042–11 061, 2012.

[4] M. A. K. Azad, A. M. A. Rocha, and E. M. Fernandes, “Improved binary
artificial fish swarm algorithm for the 0–1 multidimensional knapsack
problems,” Swarm and Evolutionary Computation, vol. 14, pp. 66–75,
2014.

[5] L. Wang, X. long Zheng, and S. yao Wang, “A novel binary fruit
fly optimization algorithm for solving the multidimensional knapsack
problem,” Knowledge-Based Systems, vol. 48, no. 0, pp. 17–23, 2013.

[6] R. Storn and K. Price, “Differential evolution : A simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global
Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997.

[7] K. De Jong, Evolutionary Computation: A Unified Approach, ser.
Bradford Book. Mit Press, 2006.

[8] X.-S. Yang, “Chapter 6—differential evolution,” in Nature-Inspired
Optimization Algorithms. Oxford: Elsevier, 2014, pp. 89–97.

[9] J. Krause, J. Cordeiro, R. S. Parpinelli, and H. S. Lopes, “A survey
of swarm algorithms applied to discrete optimization problems,” Swarm
Intelligence and Bio-inspired Computation: Theory and Applications.
Elsevier Science & Technology Books, pp. 169–191, 2013.

[10] J. Krause, R. S. Parpinelli, and H. S. Lopes, “Proposta de um
algoritmo inspirado em evolução diferencial aplicado ao problema
multidimensional da mochila,” Anais do IX Encontro Nacional de
Inteligência Artificial–ENIA. Curitiba, PR: SBC, 2012.

[11] A. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, pp. 124–141, Jul 1999.

[12] L. André and R. S. Parpinelli, “Controle de parâmetros em inteligência
de enxame e computação evolutiva,” Revista de Informática Teórica e
Aplicada, vol. 21, no. 2, pp. 83–128, 2014.

[13] D. Thierens, “An adaptive pursuit strategy for allocating operator
probabilities,” in Proceedings of the 2005 conference on Genetic and
evolutionary computation. ACM, 2005, pp. 1539–1546.

[14] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “Extreme value
based adaptive operator selection,” in Parallel Problem Solving from
Nature–PPSN X. Springer, 2008, pp. 175–184.

[15] A. Aleti and I. Moser, “Studying feedback mechanisms for adaptive
parameter control in evolutionary algorithms,” in IEEE Congress on
Evolutionary Computation (CEC), June 2013, pp. 3117–3124.

[16] O. Kramer, “Evolutionary self-adaptation: a survey of operators and
strategy parameters,” Evolutionary Intelligence, vol. 3, no. 2, pp. 51–65,
2010.

[17] L. André and R. S. Parpinelli, “An island-inspired genetic algorithm
with adaptive parameters applied to the multiple knapsack problem,” in
Proceedings of the 5th International Conference on Metaheuristics and
Nature Inspired Computing, October 2014, pp. 1–2.

[18] A. Hoff, A. Løkketangen, and I. Mittet, “Genetic algorithms for
0/1 multidimensional knapsack problems,” in Proceedings Norsk
Informatikk Konferanse. Citeseer, 1996, pp. 291–301.

54Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-7

Leanderson André and Rafael Stubs Parpinelli
IS

S
N

 2395-8618

