

AbstractThe analysis of the electrocardiogram (ECG) is an

essential tool for the diagnosis of cardiovascular diseases.

Sometimes, it is necessary to carry out long-term recordings, even

up to 24 hours, which must be carefully evaluated by specialists in

order to generate an accurate diagnosis. In the case of extensive

records, this task becomes monotonous, tedious and susceptible to

errors, highlighting the need to implement Artificial Intelligence

(AI) to automate this process, which would be a valuable support

for health professionals. However, it is important to note that most

devices used for ECG recording are low capacity, making them

incompatible for running AI algorithms directly on them. An

implementation of a web service for the identification of R-peaks

in electrocardiograms is presented. This service performs the

identification by means of a convolutional neural network, which

after being trained reached a sensitivity of 0.99658 and a

specificity of 0.99655. In this work, the main objective is to present

a basic proposal to generate services that help to perform robust

data analysis with high processing power consumption for low-

resource devices such as microprocessors.

Index TermsR-peaks, CNN, serverless.

I. INTRODUCTION

R-peak detection is a crucial task in the field of

electrocardiogram (ECG) analysis, which involves identifying

the prominent peaks in the ECG signal that correspond to the

depolarization of the ventricles of the heart. Accurate detection

of R-peaks is essential for various clinical applications,

including arrhythmia diagnosis, heart rate variability analysis,

and cardiac disease monitoring.

Traditionally, R-peak detection algorithms were based on

heuristics and signal processing techniques, such as

thresholding, template matching, and wavelet transforms.

While these methods have shown reasonable performance, they

often require careful tuning of parameters and may struggle

with complex ECG signals that exhibit significant noise,

baseline wander, and other artifacts [1-4].

The emergence of deep learning has revolutionized the field

of biomedical signal processing, including ECG analysis.

Deep learning models, in particular neural networks, both

convolutional (CNN) and recurrent (RNN), have demonstrated

remarkable capabilities in machine learning of discriminative

features from raw data, making them ideal candidates for R-

peak detection [5, 6].

By training deep learning models on large annotated ECG

datasets, it is possible to leverage the power of neural networks

to automatically extract relevant features and identify R-peaks

Manuscript received on 13/04/2023, accepted for publication on 09/06/2023.
C.F. Reyes-Manzano, M. L. Juarez-Hernandez, J.C. Cisneros-Rasgado, P.

Vera-González are with Tecnológico de Estudios Superiores de Ixtapaluca,

accurately. Deep learning-based R-peak detection algorithms

have the potential to improve both the sensitivity and specificity

of R-peak detection, leading to more reliable and efficient ECG

analysis [7, 8].

Overall, the use of deep learning in R-peak detection presents

an exciting avenue for advancing ECG analysis. By harnessing

the power of neural networks and the abundance of annotated

ECG data, deep learning models have the potential to

revolutionize R-peak detection and contribute to more accurate

and efficient cardiac monitoring systems [9].

Web services have changed the way online applications and

systems interact with each other. Nowadays, in the digital era,

where connectivity and collaboration are essential, web

services play a key role in enabling different applications to

communicate and share data over the Internet in an efficient and

standardized way.

Furthermore, a web service is a technology that allows two

or more applications, regardless of their location or

programming language, to communicate with each other over

the World Wide Web. These services follow specific principles

and standards to ensure seamless and secure interoperability. A

web service operates over HTTP (Hypertext Transfer Protocol)

and uses data exchange formats such as XML (Extensible

Markup Language) or JSON (JavaScript Object Notation) to

transmit information in a structured manner.

These services are based on the REST (Representational

State Transfer) architecture or, in some cases, on SOAP (Simple

Object Access Protocol), which define how requests and

responses are made [10].

The importance of web services lies in their ability to enable

the integration of heterogeneous systems, meaning that

applications developed in different programming languages or

platforms can interact seamlessly. This has driven the creation

of richer and more complex software ecosystems, from mobile

applications and websites to large-scale enterprise systems [11].

In this context, this article has the purpose of presenting the

way in which a CNN was implemented for the detection of R-

peaks in electrocardiograms and how this algorithm can be

executed through a web service on a web site.

This will be the basis for generating services that help to

perform robust data analysis with high processing power

consumption for low resource devices such as microprocessors.

División de Ingeniería en Sistemas Computacionales, Mexico
(cesarrm5@hotmail.com).

T.J. Contreras-Uribe is with Tecnológico de Estudios Superiores de

Ixtapaluca, División de Ingeniería Biomédica, Mexico.

1 Web Service for Automatic Detection of R-Peaks

in Electrocardiograms
Cesar Fabian Reyes-Manzano, Miriam Laura Juarez-Hernandez, Juan Carlos Cisneros-Rasgado,

Pablo Vera-González, Tania Jetzabel Contreras-Uribe

39 POLIBITS, vol. 65(2), 2023, pp. 39–43https://doi.org/10.17562/PB-65(2)-2

IS
S

N
 2395-8618

II. METHODOLOGY

A. Software Architecture

A serverless application was developed that allows the

detection of R-peaks in ECG recordings. The application

consists of a front-end and a back-end, as shown in Fig. 1. On

the front-end, the web page was designed and programmed

using HTML, CSS and JavaScript. This page connects to the

back-end through an API programmed in the API Gateway

service of Amazon Web Services (AWS).

The back-end uses a serverless architecture, which is made

up of a Lambda application that executes the code of a

previously trained CNN. All the necessary libraries for the

execution (keras, tensorflow, numpy, json) are installed in an

Amazon container, called Elastic Container Registry (ECR).

B. Convolutional Neural Networks (CNN) Training

The first stage of the proposal was the training of the

convolutional neural network, for which it was important to

select the database. Once the data was obtained, a preprocessing

was performed, the network was trained, and the information

was displayed. Each of the parts that make up this stage is

described in detail below.

Dataset. The MIT-BIH arrhythmia database was used to

train the CNN; it contains 48 recordings, each with a duration

of half an hour, with the recording of two ECG channels of

ambulatory patients (MLII, V1). For training, the MLII channel

was used for recordings 100, 101 and 102, with a total of 6340

R-peaks in the recordings. The recordings were performed

using a sampling rate of 360 samples/s per channel with a

resolution of 11 bits in a range of 10 mV. The records were

labeled by specialists for beat identification, these labels are

stored in a .atr file within an array with the values of the time

where a R-peak occurs. This database is focused on the analysis

of arrhythmias, so the signals have been preprocessed to

remove noise and no additional preprocessing is necessary [13].

Preprocessing. A Python script has been developed for the

purpose of reading ECG records. From these records, channel

V5 is extracted, and the information is organized into windows

of 50 samples each, equivalent to 139 ms. With a sampling rate

of 360 samples per second, this 139 ms. interval adequately

captures the main shape of the QRS complex, which typically

spans between 70 and 100 ms, as illustrated in Fig. 2a.

Fig. 1. System architecture

Fig. 2. Pre-processing of ECG signals. Figure 2a shows an example of a 139 ms window with a QRS complex and figure 2b shows the 50x10 pixel image

generated by duplicating the window data 10 times. Figure 2c shows another window where a QRS complex is not found and its respective image in figure 2d

Fig. 3. CNN model

40POLIBITS, vol. 65(2), 2023, pp. 39–43 https://doi.org/10.17562/PB-65(2)-2

Cesar Fabian Reyes-Manzano, Miriam Laura Juarez-Hernandez, et al.
IS

S
N

 2395-8618

Additionally, Fig. 2c displays a segment of the ECG signal

without R peaks.

To create a 50 x10 image, the data window is replicated 10

times, as depicted in Fig. 2b and Fig. 2d, in order to generate

redundant information and be able to implement a square kernel

in the first layer of the CNN. This process is iterated throughout

the entire record, resulting in the generation of 13,000 images

for each record. Subsequently, each image will undergo

evaluation by the CNN.

CNN Model. This Convolutional Neural Network (CNN)

takes, as input, an image generated using a 50x10 sample

window and produces a probability value indicating

membership in either group one (peak R) or group zero (non-

peak R). The implementation of the CNN utilized the

TensorFlow library and features a 6-layer architecture, as

shown in Fig. 3.

The first layer is a 2D convolution layer with 4 filters, a (5,5)

kernel, an input size of (10,50), and a “relu” activation function.

This layer conducts convolution in two dimensions on the

image with the specified kernel for each filter, resulting in 4

output images. The second layer is a Max Pooling layer with a

pool size of (2,2), reducing the size of the images by selecting

the largest value from each pool group.

The third layer is a Flatten layer, transforming the input

shape into a one-dimensional vector. The fourth layer is a Dense

layer with a “relu” activation function and an output space

dimensionality of 32. The fifth layer is a Dropout layer with a

rate of 0.5, randomly setting input units to 0 with a frequency

of the specified rate during training. Finally, the sixth layer is a

Dense layer with a “softmax” activation function and an output

space dimensionality of 2.

Training was performed in Colab with 12.7 GB of RAM and

used a “BinaryCrossentropy” error function and a gradient

descent optimizer function with learning rate parameters of 0.01

and impulse of 0.9. For training, the.atr annotation file was used

to identify which windows had an R-peak (labeled with a value

of one) and which did not (labeled with a value of 0). The hold-

out 70-30 validation method was also used, i.e. 81,900 windows

with 5,025 R-peaks for training and 35,100 windows with 1,902

Rpeaks for testing. For training, 75 epochs were proposed. The

hold-out 70-30 validation method was repeated 10 times using

different random seeds in each one.

Once CNN makes the prediction that an R-peak exists in the

window, the maximum point of this window is searched to

locate the exact point in time where the R-peak occurs.

Deployment. To perform the deployment of the CNN

service, the trained network model was stored in a file. This file

is read by a script located in the cloud, to obtain the CNN

training parameters and make predictions. However, due to the

weight of the Tensorflow library, a container image had to be

implemented to associate the peak detection function with the

Lambda function, which is a cloud service that allows executing

code functions in serveless form [14].

For this purpose, an ECR container manager was used, where

the container image was programmed using a docker-like file,

where all the dependencies and code necessary for the

classification of the peaks were placed, including the file with

the trained model [15]. Once the image was implemented, it

was linked to be called by the Lambda function, which in turn

is triggered by the Gateway API service [16].

Once the REST API was implemented, the website was

programmed using HTML, CSS and JavaScrip. This site has the

function of reading the .csv file, decoding the ECG signal,

separating it into windows of 50 samples, sending each window

to the API to obtain its prediction and finally plotting the signal

and the R-peaks found.

III. RESULTS

CNN was evaluated by counting how many times it correctly

detected R peaks (true positives TP), how many times it did not

detect R peaks where there were (False Negatives FN) and how

many times it detected peaks where there were not (False

Positives FP). These measurements were used to evaluate

sensitivity (Se) and specificity (Sp) [17], which are defined as:

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
, (1)

𝑆𝑒 =
 𝑇𝑃

𝑇𝑃+𝐹𝑁
. (2)

The sensitivity and specificity obtained in the 10 evaluation

cycles were averaged. The results yielded an average sensitivity

of 0.99658 and a specificity of 0.99655, providing a

comprehensive assessment of the model's performance.

The model, once trained, was exported to a POST API

function, which is a RESTlike web service that can be accessed

through the endpoint. In the body of this web request, the input

parameters are included and in this case the data of the window

to be evaluated in JSON format, as shown below:

Fig. 4. Final website

TABLE 1
EVALUATION OF R-PEAK IDENTIFICATION ALGORITHM

Method Sensitivity
Our work whit CNN 0.9965

Xiang et al. [18] 0.9977
Sarlija et al.[19] 0.9981
Chen et al. [20] 0.9981

Elgendi et al. [21] 0.9971
Lee et al.[22] 0.9969

Martinez et al.[4] 0.9913
Pan and Tompkins [3] 0.9913

Pandit et al. [2] 0.9965

41 POLIBITS, vol. 65(2), 2023, pp. 39–43https://doi.org/10.17562/PB-65(2)-2

Web Service for Automatic Detection of R-Peaks in Electrocardiograms
IS

S
N

 2395-8618

“signal”: [-0.275, -0.28, -0.285, -0.305 -0.29, ...,-0.3,-0.28,-0.29].

This information is processed, and a response will be

received in JSON format with two pieces of information: the

first is the probability of belonging to the group containing the

windows with R peaks, and the second is the probability of

belonging to group two, which is the rest of the signal:

“result”: [“0.9812707”, “0.018729316”].

Finally, this API is consumed by a website that functions as

a user interface. This website loads the CSV file and separates

it into windows to be evaluated. After evaluating all the

windows, it displays the results in a graph. An image of the

website is shown in Fig. 4.

IV. DISCUSSION

The values of some algorithms trained with the MIT-BIH

database are shown in Table 4, where you can see the sensitivity

achieved by them. Although our proposal is not the highest, we

obtained results that competed with the others, showing

differences in the range of thousandths.

The use of CNN has the advantage of not needing a pre-

processing to obtain parameters, which helps to have a higher

prediction speed once the network is trained. However, a

disadvantage is that the parameters are unknown for

classification, this can be overcome by delivering a data set

robust enough to cover most of the possible cases. For example,

for this case, include a window as R-peaks at different

locations, at the center and at the edges, and in this way, you

can control which cases you want to approve.

The system was implemented with a website and the

architecture was designed to be used as a service, for example,

in low processing power devices with Internet connectivity

(IoT), because they only perform the REST request, and the

processing is performed in the cloud. In addition, because the

cloud system processes each window independently, with the

help of JavaScript promises, the processing can resemble

parallel processing, making it faster with costs like

sequential processing.

While there is a cost associated with using AWS services, it

is considered a better option than purchasing computer systems

when services are used on a small scale. With serverless

architecture, you only pay for the time it takes to process the

request. This application is designed to analyze signals with a

sampling frequency of 360 Hz.

In order to make this parameter variable, it is necessary to

place it as an input parameter and it would imply having to

make an adjustment in the size of the analysis window, which

in this case is 50 samples, equivalent to 1.5 times the average

duration of the QRS complex. The system demonstrates that it

is feasible to perform ECG signal analysis on low capacity

devices and even perform parallel requests to achieve greater

speed. However, there are several algorithms for the detection

of R peaks that can be implemented in these devices.

For this reason, it is proposed to use the same architecture for

more complex analyses, such as arrhythmia diagnosis, heart

rate variability analysis and cardiac disease monitoring, with

the aim of justifying the suitability of the solution given the

complexity of the cases.

V. CONCLUSION

This work proposes the design and implementation of a CNN

for the detection of Rpeak with the MIT-BIH database,

obtaining a sensitivity of 0.99658 and a specificity of 0.99655.

These results show that the algorithm is competitive with resent

algorithms. In addition, a web service for the detection of R-

peaks in electrocardiogram signals was implemented in a web

site using. The objective is that the service can be used by any

device with an internet connection, mainly those with low

processing power.

The system demonstrates that it is feasible to perform ECG

signal analysis on low capacity devices and even perform

parallel requests to achieve greater speed. However, there are

several algorithms for the detection of R peaks that can be

implemented in these devices. For this reason, it is proposed to

use the same architecture for more complex analyses, such as

arrhythmia analysis, with the aim of justifying the suitability of

the solution given the complexity of the cases.

REFERENCES

[1] J. Laitala, M. Jiang, E. Syrjala, E.K. Naeini, A. Airola, A.M.

Rahmani, N.D. Dutt, and P. Liljeberg, “Robust ECG R-peak

detection using LSTM,” in Proceedings of the 35th annual

ACM symposium on applied computing, pp. 1104–1111, 2020.

DOI: 10.1145/3341 105.3373945.

[2] D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, and

C.P. Lim, “A lightweight QRS detector for single lead ECG

signals using a max-min difference algorithm,” Computer

Methods and Programs in Biomedicine, vol. 144, pp. 61–75,

2017. DOI: 10.1016/j.cmpb. 2017.02.028.

[3] J. Pan and W.J. Tompkins, “A real-time QRS detection

algorithm,” IEEE transactions on biomedical engineering, vol.

BME-32, no. 3, pp. 230–236, 1985. DOI: 10.1109/TBME.19

85.325532.

[4] J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, and P.

Laguna, “A wavelet-based ECG delineator: evaluation on

standard databases,” IEEE Transactions on biomedical

engineering, vol. 51, no. 4, pp. 570–581, 2004. DOI:

10.1109/TBME.2003. 821031.

[5] P. Silva, E. Luz, E. Wanner, D. Menotti, and G. Moreira, “QRS

detection in ECG signal with convolutional network,” in R.

Vera-Rodriguez, J. Fierrez, & A. Morales (eds), Progress in

Pattern Recognition, Image Analysis, Computer Vision, and

Applications. CIARP 2018. Lecture Notes in Computer Science,

Springer, Cham, vol. 11401, pp. 502–809, 2019. DOI:

10.1007/978-3-030-13469-3_93.

[6] M.M. Farag, “A self-contained STFT CNN for ECG

classification and arrhythmia detection at the Edge,” IEEE

Access vol. 10, pp. 94469–94486, 2022. DOI:

10.1109/ACCESS.20 22.3204703.

[7] S. Vijayarangan, R. Vignesh, B. Murugesan, S. Preejith, J.

Joseph, and M. Sivaprakasam, “Rpnet: A deep learning

approach for robust R-peak detection in noisy ECG,” in 2020

42nd annual international conference of the IEEE engineering

in medicine & biology society (EMBC), pp. 345–348, 2020.

DOI: 10.1109/EMBC44109.2020.9176084.

[8] V. Gupta, M. Mittal, and V. Mittal, “Performance evaluation of

various pre-processing techniques for R-peak detection in ECG

signal,” IETE Journal of Research, vol. 68, no. 5, pp. 3267–

3282, 2022. DOI: 10.1080/03772063.2020.1756473.

[9] N.A. Zermeño-Campos, D. Cuevas-González, J.P. García-

Vázquez, R. López-Avitia, M.E. Bravo-Zanoguera, M.A.

Reyna, and A. Díaz-Ramírez, “Péek: A cloud-based application

42POLIBITS, vol. 65(2), 2023, pp. 39–43 https://doi.org/10.17562/PB-65(2)-2

Cesar Fabian Reyes-Manzano, Miriam Laura Juarez-Hernandez, et al.
IS

S
N

 2395-8618

https://doi.org/10.1007/978-3-030-13469-3_93
https://doi.org/10.1007/978-3-030-13469-3_93

for automatic electrocardiogram pre-diagnosis,” SoftwareX,

vol. 19, pp. 101124, 2022. DOI: 10.1016/j.softx.2022.101124.

[10] C. Ferris and J. Farrell, “What are web services?”

Communications of the ACM, vol. 46, no. 6, pp. 31, 2003.

[11] F. Curbera, W. Nagy, and S. Weerawarana, “Web services:

Why and how,” in Workshop on Object-Oriented Web Services-

OOPSLA, vol. 2001, 2001.

[12] E. Saavedra-Quijada, L.A. Medina-Muñoz, F. Morales-Solís,

and G. López-Valencia, “Reconocimiento facial usando

herramientas de IA de amazon web services y sistemas

embebidos”, Research in Computing Science, vol. 8, pp. 69–77,

2018.

[13] A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C.

Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, and

H.E. Stanley, “Physiobank, physiotoolkit, and physionet:

components of a new research resource for complex

physiologic signals,” Circulation, vol. 101, pp. e215–e220,

2000. DOI: 10.1161/01.CIR.101.23.e215.

[14] Amazon Web Services, “Aws lambda,” 2022.

[15] Amazon Web Services, “Amazon elastic container registry,”

2022.

[16] Amazon Web Services, “Amazon API gateway,” 2022.

[17] X. Lu, M. Pan, and Y. Yu, “QRS detection based on improved

adaptive threshold,” Journal of healthcare engineering, 2018.

[18] Y. Xiang, Z. Lin, and J. Meng, “Automatic QRS complex

detection using two-level convolutional neural network,”

Biomedical engineering online, vol. 17, no. 13, pp. 1–17, 2018.

DOI: 10.1186/s12938-018-0441-4.

[19] M. Sarlija, F. Jurisíc, and S. Popovíc, “A convolutional neural

network-based approach to QRS detection,” in Proceedings of

the 10th international symposium on image and signal

processing and analysis, IEEE, pp. 121–125, 2017. DOI:

10.1109/ ISPA.2017.8073581.

[20] H. Chen and K. Maharatna, “An automatic R and T peak

detection method based on the combination of hierarchical

clustering and discrete wavelet transform,” IEEE Journal of

Biomedical and Health Informatics, vol. 24, no. 10, 2825–2832,

2020. DOI: 10.1109/JBHI. 2020.2973982.

[21] M. Elgendi, “Fast QRS detection with an optimized knowledge-

based method: Evaluation on 11 standard ECG databases,”

PloS, 2013. DOI: 10.1371/journal.pone.0073557.

[22] J. Lee, K. Jeong, J. Yoon, and M. Lee, “A simple real-time qrs

detection algorithm,” in Proceedings of 18th Annual

International Conference of the IEEE Engineering in Medicine

and Biology Society, IEEE, vol. 4, pp. 1396–1398, 1996. DOI:

10.1109/IEMBS.1996.647473.

43 POLIBITS, vol. 65(2), 2023, pp. 39–43https://doi.org/10.17562/PB-65(2)-2

Web Service for Automatic Detection of R-Peaks in Electrocardiograms
IS

S
N

 2395-8618

