
 

AbstractThe analysis of the electrocardiogram (ECG) is an 

essential tool for the diagnosis of cardiovascular diseases. 

Sometimes, it is necessary to carry out long-term recordings, even 

up to 24 hours, which must be carefully evaluated by specialists in 

order to generate an accurate diagnosis. In the case of extensive 

records, this task becomes monotonous, tedious and susceptible to 

errors, highlighting the need to implement Artificial Intelligence 

(AI) to automate this process, which would be a valuable support 

for health professionals. However, it is important to note that most 

devices used for ECG recording are low capacity, making them 

incompatible for running AI algorithms directly on them.  An 

implementation of a web service for the identification of R-peaks 

in electrocardiograms is presented. This service performs the 

identification by means of a convolutional neural network, which 

after being trained reached a sensitivity of 0.99658 and a 

specificity of 0.99655. In this work, the main objective is to present 

a basic proposal to generate services that help to perform robust 

data analysis with high processing power consumption for low-

resource devices such as microprocessors. 

Index TermsR-peaks, CNN, serverless. 

I. INTRODUCTION 

R-peak detection is a crucial task in the field of 

electrocardiogram (ECG) analysis, which involves identifying 

the prominent peaks in the ECG signal that correspond to the 

depolarization of the ventricles of the heart. Accurate detection 

of R-peaks is essential for various clinical applications, 

including arrhythmia diagnosis, heart rate variability analysis, 

and cardiac disease monitoring.  

Traditionally, R-peak detection algorithms were based on 

heuristics and signal processing techniques, such as 

thresholding, template matching, and wavelet transforms. 

While these methods have shown reasonable performance, they 

often require careful tuning of parameters and may struggle 

with complex ECG signals that exhibit significant noise, 

baseline wander, and other artifacts [1-4].  

The emergence of deep learning has revolutionized the field 

of biomedical signal processing, including ECG analysis. 

Deep learning models, in particular neural networks, both 

convolutional (CNN) and recurrent (RNN), have demonstrated 

remarkable capabilities in machine learning of discriminative 

features from raw data, making them ideal candidates for R-

peak detection [5, 6].  

By training deep learning models on large annotated ECG 

datasets, it is possible to leverage the power of neural networks 

to automatically extract relevant features and identify R-peaks 
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accurately. Deep learning-based R-peak detection algorithms 

have the potential to improve both the sensitivity and specificity 

of R-peak detection, leading to more reliable and efficient ECG 

analysis [7, 8]. 

Overall, the use of deep learning in R-peak detection presents 

an exciting avenue for advancing ECG analysis. By harnessing 

the power of neural networks and the abundance of annotated 

ECG data, deep learning models have the potential to 

revolutionize R-peak detection and contribute to more accurate 

and efficient cardiac monitoring systems [9].  

Web services have changed the way online applications and 

systems interact with each other. Nowadays, in the digital era, 

where connectivity and collaboration are essential, web 

services play a key role in enabling different applications to 

communicate and share data over the Internet in an efficient and 

standardized way. 

Furthermore, a web service is a technology that allows two 

or more applications, regardless of their location or 

programming language, to communicate with each other over 

the World Wide Web. These services follow specific principles 

and standards to ensure seamless and secure interoperability. A 

web service operates over HTTP (Hypertext Transfer Protocol) 

and uses data exchange formats such as XML (Extensible 

Markup Language) or JSON (JavaScript Object Notation) to 

transmit information in a structured manner.  

These services are based on the REST (Representational 

State Transfer) architecture or, in some cases, on SOAP (Simple 

Object Access Protocol), which define how requests and 

responses are made [10]. 

The importance of web services lies in their ability to enable 

the integration of heterogeneous systems, meaning that 

applications developed in different programming languages or 

platforms can interact seamlessly. This has driven the creation 

of richer and more complex software ecosystems, from mobile 

applications and websites to large-scale enterprise systems [11]. 

In this context, this article has the purpose of presenting the 

way in which a CNN was implemented for the detection of R-

peaks in electrocardiograms and how this algorithm can be 

executed through a web service on a web site.  

This will be the basis for generating services that help to 

perform robust data analysis with high processing power 

consumption for low resource devices such as microprocessors. 
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II. METHODOLOGY 

A. Software Architecture 

A serverless application was developed that allows the 

detection of R-peaks in ECG recordings. The application 

consists of a front-end and a back-end, as shown in Fig. 1. On 

the front-end, the web page was designed and programmed 

using HTML, CSS and JavaScript. This page connects to the 

back-end through an API programmed in the API Gateway 

service of Amazon Web Services (AWS). 

The back-end uses a serverless architecture, which is made 

up of a Lambda application that executes the code of a 

previously trained CNN. All the necessary libraries for the 

execution (keras, tensorflow, numpy, json) are installed in an 

Amazon container, called Elastic Container Registry (ECR). 

B. Convolutional Neural Networks (CNN) Training 

The first stage of the proposal was the training of the 

convolutional neural network, for which it was important to 

select the database. Once the data was obtained, a preprocessing 

was performed, the network was trained, and the information 

was displayed. Each of the parts that make up this stage is 

described in detail below. 

Dataset. The MIT-BIH arrhythmia database was used to 

train the CNN; it contains 48 recordings, each with a duration 

of half an hour, with the recording of two ECG channels of 

ambulatory patients (MLII, V1). For training, the MLII channel 

was used for recordings 100, 101 and 102, with a total of 6340 

R-peaks in the recordings. The recordings were performed 

using a sampling rate of 360 samples/s per channel with a 

resolution of 11 bits in a range of 10 mV. The records were 

labeled by specialists for beat identification, these labels are 

stored in a .atr file within an array with the values of the time 

where a R-peak occurs. This database is focused on the analysis 

of arrhythmias, so the signals have been preprocessed to 

remove noise and no additional preprocessing is necessary [13]. 

Preprocessing. A Python script has been developed for the 

purpose of reading ECG records. From these records, channel 

V5 is extracted, and the information is organized into windows 

of 50 samples each, equivalent to 139 ms. With a sampling rate 

of 360 samples per second, this 139 ms. interval adequately 

captures the main shape of the QRS complex, which typically 

spans between 70 and 100 ms, as illustrated in Fig. 2a. 

 

Fig. 1. System architecture 

 

Fig. 2. Pre-processing of ECG signals. Figure 2a shows an example of a 139 ms window with a QRS complex and figure 2b shows the 50x10 pixel image 

generated by duplicating the window data 10 times. Figure 2c shows another window where a QRS complex is not found and its respective image in figure 2d 

 

Fig. 3. CNN model 
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Additionally, Fig. 2c displays a segment of the ECG signal 

without R peaks. 

To create a 50 x10 image, the data window is replicated 10 

times, as depicted in Fig. 2b and Fig. 2d, in order to generate 

redundant information and be able to implement a square kernel 

in the first layer of the CNN. This process is iterated throughout 

the entire record, resulting in the generation of 13,000 images 

for each record. Subsequently, each image will undergo 

evaluation by the CNN. 

CNN Model. This Convolutional Neural Network (CNN) 

takes, as input, an image generated using a 50x10 sample 

window and produces a probability value indicating 

membership in either group one (peak R) or group zero (non-

peak R). The implementation of the CNN utilized the 

TensorFlow library and features a 6-layer architecture, as 

shown in Fig. 3. 

The first layer is a 2D convolution layer with 4 filters, a (5,5) 

kernel, an input size of (10,50), and a “relu” activation function. 

This layer conducts convolution in two dimensions on the 

image with the specified kernel for each filter, resulting in 4 

output images. The second layer is a Max Pooling layer with a 

pool size of (2,2), reducing the size of the images by selecting 

the largest value from each pool group. 

The third layer is a Flatten layer, transforming the input 

shape into a one-dimensional vector. The fourth layer is a Dense 

layer with a “relu” activation function and an output space 

dimensionality of 32. The fifth layer is a Dropout layer with a 

rate of 0.5, randomly setting input units to 0 with a frequency 

of the specified rate during training. Finally, the sixth layer is a 

Dense layer with a “softmax” activation function and an output 

space dimensionality of 2. 

Training was performed in Colab with 12.7 GB of RAM and 

used a “BinaryCrossentropy” error function and a gradient 

descent optimizer function with learning rate parameters of 0.01 

and impulse of 0.9. For training, the.atr annotation file was used 

to identify which windows had an R-peak (labeled with a value 

of one) and which did not (labeled with a value of 0). The hold-

out 70-30 validation method was also used, i.e. 81,900 windows 

with 5,025 R-peaks for training and 35,100 windows with 1,902 

Rpeaks for testing. For training, 75 epochs were proposed. The 

hold-out 70-30 validation method was repeated 10 times using 

different random seeds in each one. 

Once CNN makes the prediction that an R-peak exists in the 

window, the maximum point of this window is searched to 

locate the exact point in time where the R-peak occurs. 

Deployment. To perform the deployment of the CNN 

service, the trained network model was stored in a file. This file 

is read by a script located in the cloud, to obtain the CNN 

training parameters and make predictions. However, due to the 

weight of the Tensorflow library, a container image had to be 

implemented to associate the peak detection function with the 

Lambda function, which is a cloud service that allows executing 

code functions in serveless form [14]. 

For this purpose, an ECR container manager was used, where 

the container image was programmed using a docker-like file, 

where all the dependencies and code necessary for the 

classification of the peaks were placed, including the file with 

the trained model [15]. Once the image was implemented, it 

was linked to be called by the Lambda function, which in turn 

is triggered by the Gateway API service [16]. 

Once the REST API was implemented, the website was 

programmed using HTML, CSS and JavaScrip. This site has the 

function of reading the .csv file, decoding the ECG signal, 

separating it into windows of 50 samples, sending each window 

to the API to obtain its prediction and finally plotting the signal 

and the R-peaks found. 

III. RESULTS 

CNN was evaluated by counting how many times it correctly 

detected R peaks (true positives TP), how many times it did not 

detect R peaks where there were (False Negatives FN) and how 

many times it detected peaks where there were not (False 

Positives FP). These measurements were used to evaluate 

sensitivity (Se) and specificity (Sp) [17], which are defined as: 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
, (1) 

𝑆𝑒 =
 𝑇𝑃

𝑇𝑃+𝐹𝑁
. (2) 

The sensitivity and specificity obtained in the 10 evaluation 

cycles were averaged. The results yielded an average sensitivity 

of 0.99658 and a specificity of 0.99655, providing a 

comprehensive assessment of the model's performance. 

The model, once trained, was exported to a POST API 

function, which is a RESTlike web service that can be accessed 

through the endpoint. In the body of this web request, the input 

parameters are included and in this case the data of the window 

to be evaluated in JSON format, as shown below: 

 

Fig. 4. Final website 

TABLE 1 
EVALUATION OF R-PEAK IDENTIFICATION ALGORITHM 

Method Sensitivity 
Our work whit CNN 0.9965 

Xiang et al. [18] 0.9977 
Sarlija et al.[19] 0.9981 
Chen et al. [20] 0.9981 

Elgendi et al. [21] 0.9971 
Lee et al.[22] 0.9969 

Martinez et al.[4] 0.9913 
Pan and Tompkins [3] 0.9913 

Pandit et al. [2] 0.9965 
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“signal”: [-0.275, -0.28, -0.285, -0.305 -0.29, ...,-0.3,-0.28,-0.29]. 

This information is processed, and a response will be 

received in JSON format with two pieces of information: the 

first is the probability of belonging to the group containing the 

windows with R peaks, and the second is the probability of 

belonging to group two, which is the rest of the signal: 

“result”: [“0.9812707”, “0.018729316”]. 

Finally, this API is consumed by a website that functions as 

a user interface. This website loads the CSV file and separates 

it into windows to be evaluated. After evaluating all the 

windows, it displays the results in a graph. An image of the 

website is shown in Fig. 4. 

IV. DISCUSSION 

The values of some algorithms trained with the MIT-BIH 

database are shown in Table 4, where you can see the sensitivity 

achieved by them. Although our proposal is not the highest, we 

obtained results that competed with the others, showing 

differences in the range of thousandths. 

The use of CNN has the advantage of not needing a pre-

processing to obtain parameters, which helps to have a higher 

prediction speed once the network is trained. However, a 

disadvantage is that the parameters are unknown for 

classification, this can be overcome by delivering a data set 

robust enough to cover most of the possible cases. For example, 

for this case, include a window as R-peaks at different 

locations, at the center and at the edges, and in this way, you 

can control which cases you want to approve. 

The system was implemented with a website and the 

architecture was designed to be used as a service, for example, 

in low processing power devices with Internet connectivity 

(IoT), because they only perform the REST request, and the 

processing is performed in the cloud. In addition, because the 

cloud system processes each window independently, with the 

help of JavaScript promises, the processing can resemble 

parallel processing, making it faster with costs like 

sequential  processing. 

While there is a cost associated with using AWS services, it 

is considered a better option than purchasing computer systems 

when services are used on a small scale. With serverless 

architecture, you only pay for the time it takes to process the 

request. This application is designed to analyze signals with a 

sampling frequency of 360 Hz. 

In order to make this parameter variable, it is necessary to 

place it as an input parameter and it would imply having to 

make an adjustment in the size of the analysis window, which 

in this case is 50 samples, equivalent to 1.5 times the average 

duration of the QRS complex. The system demonstrates that it 

is feasible to perform ECG signal analysis on low capacity 

devices and even perform parallel requests to achieve greater 

speed. However, there are several algorithms for the detection 

of R peaks that can be implemented in these devices. 

For this reason, it is proposed to use the same architecture for 

more complex analyses, such as arrhythmia diagnosis, heart 

rate variability analysis and cardiac disease monitoring, with 

the aim of justifying the suitability of the solution given the 

complexity of the cases. 

V. CONCLUSION 

This work proposes the design and implementation of a CNN 

for the detection of Rpeak with the MIT-BIH database, 

obtaining a sensitivity of 0.99658 and a specificity of 0.99655. 

These results show that the algorithm is competitive with resent 

algorithms. In addition, a web service for the detection of R-

peaks in electrocardiogram signals was implemented in a web 

site using. The objective is that the service can be used by any 

device with an internet connection, mainly those with low 

processing power. 

The system demonstrates that it is feasible to perform ECG 

signal analysis on low capacity devices and even perform 

parallel requests to achieve greater speed. However, there are 

several algorithms for the detection of R peaks that can be 

implemented in these devices. For this reason, it is proposed to 

use the same architecture for more complex analyses, such as 

arrhythmia analysis, with the aim of justifying the suitability of 

the solution given the complexity of the cases. 
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