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Abstract—This paper proposes a hybrid multi-step-ahead
forecasting model based on two stages to improve monthly
pelagic fish-catch time-series modeling. In the first stage, the
stationary wavelet transform is used to separate the raw time
series into a high frequency (HF) component and a low frequency
(LF) component, whereas the periodicities of each time series is
obtained by using the Fourier power spectrum. In the second
stage, both the HF and LF components are the inputs into a
bi-variate autoregressive model to predict the original time series.
We demonstrate the utility of the proposed forecasting model on
monthly sardines catches time-series of the coastal zone of Chile
for periods from January 1949 to December 2011. Empirical
results obtained for 12-month ahead forecasting showed the
effectiveness of the proposed hybrid forecasting strategy.

Index Terms—Wavelet analysis, bi-variate regression, forecast-
ing model.

I. INTRODUCTION

MULTI-STEP-AHEAD forecasting of pelagic species
time series is one of the main goals of the fishery

industry and the government. To the best of our knowledge,
very publications exist on one-step-ahead forecasting models
for fisheries time series based on both autoregressive integrated
moving average (ARIMA) models [1], [2] and multilayer
perceptron (MLP) neural network models [3], [4]. On the one
hand, the disadvantage of models based on linear regression
is the supposition of stationarity of the fishes catches time
series. However, the fisheries time series are non-stationary
due to climatic fluctuations. On the other hand, although MLP
neural networks allow modeling the non-linear behavior of
a time series, they also have some disadvantages such as
slow convergence speed and the stagnancy of local minima
due to the steepest descent learning method. To improve
the convergence speed and forecasting precision of anchovy
catches off northern Chile, Gutierrez [3] proposed a hybrid
model based on a MLP neural network combined with an
ARIMA model, whose model gave an explained variance of
87%.

In this paper, a multi-step-ahead forecasting model of
monthly fishes catches is proposed to achieve a more
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accurate model than a MLP neural network model. Our
proposed forecasting model is based on two phase. In the
first phase, the haar stationary wavelet transform (SWT)
is used to extract a high frequency (HF) component of
intra-annual periodicity and a low frequency (LF) component
of inter-annual periodicity. The wavelet decomposition was
selected due to its popularity in hydrological [5], [6],
electricity market [7], financial market [8] and smoothing
methods [9], [10], [11]. In the second stage, both the HF and
LF components are the inputs into a bi-variate autoregressive
(BAR) model to predict the original time series. Besides, the
proposed BAR model is compared with a MLP neural network
model with Ni input nodes, Nh hidden nodes and two output
nodes.

This paper is organized as follows. In the next section,
we present hybrid multi-step-ahead forecasting model. The
simulation results are presented in Section 3 followed by
conclusions in Section 4.

II. PROPOSED MULTI-STEP-AHEAD FORECASTING

In order to predict the future values of time series x(n), we
can separate the raw time series x(n) into two components
by using Haar SWT. The first extracted component xH of
the time series is characterized by fast dynamics, whereas
the second component xL is characterized by low dynamics.
Therefore, in our forecasting model a time series is considered
as a functional relationship of several past observations of the
components xL and xH as follows:

x̂(n+ h) = f(xL(n−m), xH(n−m));

the h value represents forecasting horizon and i = 1, 2, . . . m
denotes lagged values of both the LF and HF components.
Besides, the functional relationship f(·) in this paper is
estimated by using a BAR model and a MLP neural network
model. The following three subsections present the SWT, BAR
forecasting model and MLP forecasting model.

A. Stationary Wavelet Transform

Let x(n) denote the value of a time series at time n,
then x(n) can be represented at multiple resolutions by
decomposing the signal on a family of wavelets and scaling
functions [9], [10], [11]. The approximation (scaled) signals
are computed by projecting the original signal on a set of
orthogonal scaling functions of the form:

φjk(t) =
√

2−jφ(2−jt− k),
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Fig. 1. Monthly sardines catches

or equivalently by filtering the signal using a low pass filter
of length r, h = [h1, h2, ..., hr], derived from the scaling
functions. On the other hand, the detail signals are computed
by projecting the signal on a set of wavelet basis functions of
the form

ψjk(t) =
√

2−jψ(2−jt− k),

or equivalently by filtering the signal using a high pass filter
of length r, g = [g1, g2, ..., gr], derived from the wavelet basis
functions. Finally, repeating the decomposing process on any
scale J , the original signal can be represented as the sum of
all detail coefficients and the last approximation coefficient. In
time series analysis, discrete wavelet transform (DWT) often
suffers from a lack of translation invariance. This problem can
be tackled by means of the un-decimated stationary wavelet
transform (SWT). The SWT is similar to the DWT in that the
high-pass and low-pass filters are applied to the input signal at
each level, but the output signal is never decimated. Instead,
the filters are up-sampled at each level.

Consider the following discrete signal x(n) of length N
where N = 2J for some integer J . At the first level of SWT,
the input signal x(n) is convolved with the h1(n) filter to

obtain the approximation coefficients a1(n) and with the g1(n)
filter to obtain the detail coefficients d1(n), so that:

a1(n) =
∑
k

h1(n− k)x(k),

d1(n) =
∑
k

g1(n− k)x(k),

because no sub-sampling is performed, a1(n) and d1(n) are
of length N instead of N/2 as in the DWT case. At the next
level of the SWT, a1(n) is split into two parts by using the
same scheme, but with modified filters h2 and g2 obtained by
dyadically up-sampling h1 and g1.

The general process of the SWT is continued recursively
for j = 1, ..., J and is given as:

aj+1(n) =
∑
k

hj+1(n− k)aj(k)

dj+1(n) =
∑
k

gj+1(n− k)aj(k)

where hj+1 and gj+1 are obtained by the up-sampling operator
inserts a zero between every adjacent pair of elements of hj
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Fig. 2. High frequency sardines catches

and gj ; respectively. Therefore, the output of the SWT is then
the approximation coefficients aJ and the detail coefficients
d1, d2, ..., dJ . The wavelet decomposition method is fully
defined by the choice of a pair of low and high pass filters and
the number of decomposition steps J . Hence, in this study we
choose a pair of Daubechies Db2 filters (has two wavelet and
scaling coefficients) [12].

B. Bi-variate Forecasting Model

A bi-variate wavelet autoregressive (BWAR) model is used
to estimate the function f̂(·), which is given as

U = ZA,

ui,1 = XH(i+ h),

ui,2 = XL(i+ h),

zi,j = XH(i− j), j = 0, . . . ,m− 1,

zi,m+j = XL(i− j), j = 0, . . . ,m− 1,

where U is the matrix dependent variables of M rows by
2 columns, M is the set of input-output samples, Z is the
regressor matrix of M rows by 2m columns and A is the
parameters matrix of 2m rows by 2 columns. In order to

estimate the parameters A the linear least squares method is
used, which is given as

A = Z†U ;

(·)† denotes the Moore-Penrose pseudoinverse [13].

C. Neural Network Forecasting Model

A single-hidden neural network with two output nodes is
used to estimate the function f̂(·), which is defined as

uk(n) =

Nh∑
j=1

bjφj(zi, vj), k = 1, 2,

x̂(n+ h) = u1(n) + u2(n),

where Nh is the number of hidden nodes, z = [z1, z2, . . . z2m]
denotes the input regression vector containing 2m lagged
values, [b1, . . . bNh

] represents the linear output parameters,
[vj,1, vj,2, . . . vj,2m] denotes the nonlinear parameters, and
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Fig. 3. Low frequency sardines catches

φj(·) are hidden activation functions, which are derived as:

φj(zi) = φ
( 2m∑

i=1

vj,izi

)
,

φ(z) =
1

1 + exp(−z)
.

In order to estimate both the linear and nonlinear
parameters of the MLP, we use the Levenberg-Marquardt
(LM) algorithm [14]. The LM algorithm adapts the θ =
[b1, . . . bNh

, vj,1, . . . vj,2m] parameters of the neuro-forecaster
minimizing mean square error, which is defined as:

E(θ) =
1

2

M∑
i=1

(
e(θi)

)2
Finally, the LM algorithm adapts the parameter θ according

to the following equations:

θ = θ + ∆θ,

∆θ = (ΥΥT + µI)−1ΥT e,

where Υ represents the Jacobian matrix of the error vector
evaluated in θi and the error vector e(θi) = x(n+h)− x̂(n+

h) is the error of the MLP neural network for i pattern, I
denotes the identity matrix and the parameter µ is increased
or decreased at each step of the LM algorithm.

III. EXPERIMENTS AND RESULTS

In this section, we apply the proposed BWAR model for
12-month-ahead sardines catches forecasting. The data set
used corresponded to landing of sardines in the south of Chile.
These samples were collected monthly from 1 January 1949
to 31 December 2011 by the National Fishery Service of Chile
(www.sernapesca.cl). The raw sardines data set have been
normalized to the range from 0 to 1 by simply dividing the
real value by the maximum of the appropriate set. On the other
hand, the original data set was also divided into two subsets.
In the first subset the 85% of the time series were chosen
for the calibration phase (parameters estimation), whereas the
remaining data set were used for the testing phase.

The normalized raw time series and the Fourier power
spectrum are present in Figures 1(a) and 1(b); respectively.
The red thick line in Figure 1(b) designates the confidence
level against red noise spectrum. From Figure 1(b) it can be
observed that there are one peaks of significant power, which
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Fig. 4. NRMSE versus Lagged values

has an annual periodicities of 12 months (freq = 0.083).
After we applied the Fourier power spectrum to the raw time
series, we decided to use 3-level wavelet decomposition due
to the significative peak of 12 months. Both the HF and
LF components (times series) are presented in Figures 2(a)
and 3(a); respectively, whereas the power spectrum of both
time series are illustrated in Figure 2(b) and 3(b); respectively.

In this study, three criteria of forecasting accuracy called
normalised root mean squares error (NRMSE), modified
Nash-Sutcliffe efficiency coefficient (MNSE) and coefficient
of determination (R2) were used to evaluate the forecasting
capabilities of the proposed hybrid forecasting models, which
are defined as

NRMSE =

√√√√∑L
i=1

(
x(i)− x̂(i)

)2∑L
i=1

(
x(i)− x̄

)2
MNSE = 1−

∑L
i=1

∣∣x(i)− x̂(i)
∣∣∑L

i=1

∣∣x(i)− x̄
∣∣

R2 = 1−
∑L

i=1

(
x(i)− x̂(i)

)2∑L
i=1

(
x(i)− x̄

)2 ,

where x(i) is the actual value at time i, x̂(i) is the forecasted
value at time i, x̄ is the mean of observed data and L is the
number of forecasts.

Find the order of the bi-variate autoregressive model is a
complex task, but here we will use the following metric to
evaluate different lagged values, which is given as

∆(NRMSE) = NRMSE(m)−NRMSE(m− 1),

where m denotes values with m=2,. . . ,36 months.
Figure 4 shows the results of testing data for lagged values

between 10 and 36 months due to significant periods of the low
frequency component, whose best result was achieved with
m = 30 months, whereas Figures 5 show the results obtained
with the best BWAR(30) forecasting model during the testing
phase. Figure 5(a) provides data on observed monthly sardines
catches versus forecasted catches; this forecasting behavior is
very accurate for testing data with a NRMSE of 11% and a
MNSE of 98%. On the other hand, from Figure 5(b) it can
be observed a good fit to a linear curve with a coefficient of
determination of 98%.

Once evaluated the BWAR(30) forecasting model perform
calibration of the neural network with Ni = 60 input
nodes, Nh =

√
Ni +No =

√
60 + 2 = 8 hidden nodes

and No = 2 output nodes. In the training process, overall
weights were initialized by a Gaussian random process with
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Fig. 5. Twelve-month-ahead BWAR forecasting for test data set

a normal distribution N(0, 1) and the stopping criterion was
a maximum number of iterations set at 500. Due to the
random initialization of the weights, we used 30 runs to
find the best MLP neural network with a low prediction
error. Figures 6(a) and 6(b) show the results obtained with
the MLP(60,8,2) forecasting model during the testing phase.
Figure 6(a) illustrates the observed data set versus forecasted
data set, which obtains a NRMSE and a MNSE of 35% and
68%; respectively. On the other hand, Figure 6(b) shows the
scatter curve between observed values and forecasted values
with a R2 of 89%.

IV. CONCLUSIONS

In this paper was proposed a multi-step-ahead forecasting
model to improve prediction accuracy based on Haar
stationary wavelet decomposition combined with a bi-variate
autoregressive model. The reason of the improvement in
forecasting accuracy was due to use Daubechies SWT to
separate both the LF and HF components of the raw
time series, since the behavior of each component is more
smoothing than raw data set. It was show that the proposed
hybrid forecasting model achieves 11% and 98% of NRMSE
and MNSE; respectively. Besides, the experimental results

demonstrated a better performance of the proposed model
when compared with a MLP neural network prediction model.
Finally, hybrid forecasting model can be suitable as a very
promising methodology to any other pelagic species.
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