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Abstract—We propose in this paper a Blocking Iterated
Greedy algorithm (BIG) which makes an adjustment between two
relevant destruction and construction stages to solve the blocking
flow shop scheduling problem and minimize the maximum
completion time (makespan). The greedy algorithm starts from
an initial solution generated based on some well-known heuristic.
Then, solutions are enhanced till some stopping condition and
through the above mentioned stages. The effectiveness and
efficiency of the proposed technique are deduced from all the
experimental results obtained on both small randomly generated
instances and on Taillard’s benchmark in comparison with
state-of-the-art methods.

Index Terms—Blocking, flow shop, makespan, iterated greedy
method.

I. PROBLEM DESCRIPTION

IN the Blocking Flow Shop Scheduling Problem (BFSP),
there is a finite set of N jobs that must be processed on

M machines in the same order. Indeed, since there is no
buffer storage between each consecutive pair of machines,
intermediate queues of jobs waiting for their next process are
not allowed. So, a job cannot leave its current machine till the
next downstream machine is clear. This blocking state avoids
progressing of other jobs on the blocked shop.

Furthermore, each job i (i = 1, 2, ..., N) ready at time zero
and requiring non-negative time pij as a processing delay has
to be processed first on machine M1, then on machine M2
and so on till on machine Mm (j = 1, 2, ...,M). That is the
sequence in which the jobs are to be processed is identical
for each machine. Besides, the processing of a given job
at a machine cannot be interrupted once started. Each job
can be processed only on one machine at a time and each
machine can process at most one job at a time. Based on the
above definitions, the final objective is to find out a sequence
for processing all jobs on all machines so that its maximum
completion time (makespan) is minimized. Formally, the BFSP
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aborted in this research is the Fm|block|Cmax in conformance
with the classifications mentioned by Graham et al. [1]. The
most popular eccentric work done on this problem is [2] who
showed that the F2|blocking|Cmax instance may be reduced
to a special case of the traveling salesman problem which
may be solved in polynomial time using Gilmore and Gomory
algorithm [3]. When the number of machines exceeds two
(m > 2), then the problem becomes strongly NP-hard [4].
The BFSP may be sketched in many real-life situations. We
may cite the robotic cell [5], the iron and steel production [6],
the manufacturing of concrete blocks and other.

As well, let Π := (π1, π2, ..., πN ) be a possible solution
for the BFSP, where πi denotes the ith job in the specific
sequence; dπi,j (i = 1, 2, ..., N ; j = 0, 1, 2, ...,M) defines the
departure time of job πi on machine j, where dπi,0 represents
the time job πi begins its processing on the first machine. The
corresponding values of makespan of Π may then be calculated
as Cmax(Π) = CπN ,M (Π) in O(nm), where Cπi,M = dπi,M

is the completion time of job πi on machine M that can be
calculated generally using expressions presented in [7]. We
choose in this work to refer to the method based on tails
calculation to express the makespan of a given permutation
as Cmax(Π) = f1,1 where fi,j defines the length of time
between the latest loading time of operation oij and the end
of the operations for j : M,M − 1, ..., 1; and fi,M+1 is the
duration between the latest completion time of operation oiM
and the end of the operations [8]. Consequently, we obtain the
following recursive equations:

fN,M+1 = 0

fN,j = fN,j+1 + pNj j = M,M − 1, ..., 2 (1)
fi,M+1 = fi+1,M i = N − 1, N − 2..., 1 (2)

fi,j = max{fi,j+1 + pij , fi+1,j−1}
i = N − 1, ..., 1; (3)
j = M, ..., 2

fi,1 = fi,2 + pi1 i = N,N − 1, ..., 1 (4)

In the beyond recursion, the tails of the last job on every
machine are calculated first, then the second last job, and so
on up to the first job.

Due to the NP-hardiness of the BFSP, small number
of methods have been proposed to solve it. They are
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ranged from exact methods to meta-heuristic ones. Some
of the most important techniques are briefly presented in
the following. Solving the BFSP using exact methods has
attracted few attention in comparison with other original flow
shop problems [9], [10], [11]. In [12], a lower bounding
schemes were exposed, next an exact method based on
the Branch-and-Bound (B&B) technique which uses a new
compounded lower bounds was developed in [13]. Besides,
a double B&B algorithm using the reversibility property
of the problem is proposed in [14]. As well, two MBIP
models and one B&B algorithm were lately presented to
solve to optimality the BFSP under the total completion time
measure [15]. Certainly, exact methods are unable to solve the
problem within a reasonable computational time. Therefore,
this incapacity explains the necessity to employ heuristics and
meta-heuristics. As constructive heuristics, we may cite the
Profile Fitting (PF) [16] and the Nawaz-Enscore-Ham (NEH)
technique [17]. Some priority rules and tie breaking strategies
were proposed in [18]. In [19] and [20] the NEH-WPT
heuristic and a constructive and a GRASP-based heuristics
for the BFSP were introduced respectively. Basically, the
NEH-WPT sorts all jobs in a non-decreasing order of the sum
of their processing times on all machines.

Afterward, meta-heuristics algorithms appear as a comple-
ment to their counterparts heuristics. The (Ron) algorithm
was presented in [13] regarding the blocking constraints, and
a Tabu Search (TS) and an enhanced TS techniques were
used by Grabowski et al. In [21], we locate an Iterated
Greedy (IG) method based on the insertion stage of the
NEH. Under the total flow time criterion, we cite the hybrid
modified global-best Harmony Search (hmgHS) algorithm
and the Discrete Artificial Bee Colony algorithm (DABC D)
technique exposed in [19] and [22], respectively. Under Cmax
criterion, an effective Revised Artificial Immune Systems
(RAIS) algorithm is proposed in [23], a three-phase algorithm
presented in [24], and a Discrete Particle Swarm Optimization
algorithm (DPSO) with self-adaptive diversity control was
treated in [25]. Subsequently, we refer to the Memetic
Algorithm (MA) in [26], the Iterated Local Search algorithm
(ILS) coupled with a Variable Neighborhood Search (VNS)
in [27], and the Blocking Genetic Algorithm (BGA) and
Blocking Artificial Bee Colony (BABC) algorithms in [28].
Experimental results demonstrated that both of the two later
proposed algorithms are more efficient in finding better
solutions than all other leading techniques.

Now, among meta-heuristics, we focused on the IG
algorithm which is being applied to many scheduling problems
and subsequently to flow shop variants [29]. It is simple and
effective: the approach applies constructive methods iteratively
to a selected solution and then uses an acceptance criterion
to decide whether the obtained solution substitutes the old
one. Indeed, a sequence of solution is obtained using some
destruction and construction stages. The destruction phase
removes some elements from one selected solution. Next,
in the construction phase, a new solution is created by

reconstructing a complete solution using a greedy constructive
heuristic, which reinserts the removed elements in some order
to form a new complete sequence. Facultatively, a local search
algorithm may be added to boost the constructed solution.

The basic steps of the IG algorithm are given as shown in
Table I. After presenting the problem background, the rest of

TABLE I
PSEUDO-CODE OF IG ALGORITHM

Begin
Generate initial solution Π0;
Apply local search to Π0, and Put the modified
solution into Πs; % Optional

Repeat
Πd= Destruction(Πs);
Πc= Construction(Πd);
Πl= Local search(Πc); % Optional
Πf= Acceptance criterion(Πs,Πl);

Until termination condition met
End

this paper is organized as follows: In Section 2, the Blocking
IG algorithm (BIG) is stated. In Section 3, the computational
results and comparisons are provided, and Conclusions are
made together with future research direction in Section 4.

II. SOLVING THE BLOCKING FLOW SHOP PROBLEM
BASED ON THE ITERATED GREEDY ALGORITHM

In this section, the details of the BIG proposed for the
problem under discuss is introduced. We recall that the key
components of all existing heuristics for the BFSP have been
developed based on the NEH heuristic which is made up of
two stages: the first stage is the creation of the preliminary
sequence of the jobs, and next comes the iterative process of
insertion of the resulting jobs depending on the initial sequence
obtained in phase 1.

A. Initial solution

To generate the initial solution we have used the PF-NEH(x)
heuristic as in [28]. However, instead of generating x solutions
at the end of the heuristic we choose only the permutation
with the minimum objective value. As well, we employ the
insertion-based local search to produce a neighboring solution.
In this local search, a job is removed from its original position
and reinserted in all other possible places. The local technique
is applied with a probability Pls. Next, if the objective value is
enhanced then the solution is replaced. The final permutation
Πs thus obtained is the seed sequence.

B. Destruction and construction stages

On the basis of an initial solution, the destruction phase
is applied. This stage begins with a complete solution Πs

and then extracts [q ∗ Πs] randomly chosen jobs from Πs in
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an iterative way. The degree of destruction q is in the range
[0,1]. This creates two subsequences: the first one contains the
removed jobs Πr, and the second subsequence is the rest of
the initial sequence obtained after removing some jobs Πs.

Now, based on these resulting subsequences, in the
construction phase a final solution Πc is then reconstructed
using a greedy constructive algorithm by reinserting the
previously removed jobs in the order in which they were
extracted.

The pseudo-codes of the destruction and construction steps
are as in Table II and Table III.

TABLE II
PSEUDO-CODE OF DESTRUCTION STAGE (Πs ,q)

Begin
Stage 1: Set Πr empty
Stage 2: Let Πq ← Πs

Stage 3: For i = 1 to (q ∗ |Πq|) Do
1) Πq ← remove a randomly selected job from

Πq

2) Πr ← include the removed job in Πr

End

TABLE III
PSEUDO-CODE OF CONSTRUCTION STAGE (Πq ,Πr )

Begin
Stage 1: Let Πc ← Πq

Stage 2: For j = 1 to |Πr| Do
1) Πc ← best permutation obtained after inserting

job πrj in all possible positions of Πc

End

C. Acceptance criterion

Once a newly reconstructed solution has been obtained,
an acceptance criterion is applied to decide wether it will
replace the current incumbent solution or not. We consider
the Simulated Annealing (SA) acceptance criteria that may
be achieved by accepting worse solutions with a certain
probability as used in [29], [30]. This acceptance criterion
is used with a constant temperature value, which depends on
the number of jobs, the number of machines, and on other
adjustable parameter λ:

Tempt = λ ∗
∑N
i=1

∑M
j=1 pij

10 ∗M ∗N
(5)

Let Mksp(Πs) and Mksp(Πc) be respectively the makespan
values of the current incumbent solution and the new
reconstructed solution. Also, let rand() be a function returning
a random number sampled from a uniform distribution
between 0 and 1.

If Mksp(Πc) ≥ Mksp(Πs) Then Πc is accepted as the
new incumbent solution if:

rand() ≤ exp{Mksp(Πc)−Mksp(Πs)/Tempt} (6)

D. Final BIG algorithm

Considering all previous subsections, the proposed BIG
algorithm for the BFSP goes as in Table IV.

TABLE IV
PSEUDO-CODE OF BIG ALGORITHM

Begin
Stage 1: Set the parameters: Pls, q, λ and MCN .
Stage 2: Obtain the initial solution using the PF-NEH(x)
heuristic. Depending on the local probability rate Pls,
improve the initial solution using the insertion-based local
search technique. Let the final permutation Πs be the seed
sequence.
Stage 3: Let Π∗ = Πs

Stage 4:
While termination condition is not met Do

1) Πq= Destruction-phase(Πs, q)
2) Πc= Construction-phase(Πq)
3) Πc′= Local-phase(Πc, Pls)
4) If Mksp(Πc′) < Mksp(Πs) Then

a) Πs := Πc′

b) If Mksp(Πs) < Mksp(Π∗) Then
i) Π∗ := Πs

5) Else If (rand() ≤
exp{Mksp(Πs)−Mksp(Πc′)/Tempt}) Then

a) Πs := Πc′

Stage 5: Return the best solution found Π∗

End

III. COMPUTATIONAL RESULTS

In the following, to confirm the effectiveness and
competitiveness of BIG, its performances are compared against
some leading methods in the literature. As usually done, we
have used the Taillard instances [31] to test our technique.
This benchmark include 120 problems of multiple sizes
arranged into 12 subsets. Each subset entails ten instances with
equal size (20*5, 20*10, 20*20, 50*5, 50*10, 50*20, 100*5,
100*10, 100*20, 200*10, 200*20, and 500*20) where the first
number define the job size and the second one represent the
machine size.

Each instance is independently run 10 times and in each run
we compute the percentage relative difference (PRD) using the
following expression:

RPD(A) =
(MkspA −MkspMin)× 100

MkspMin
(7)
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where, MkspA defines the value of the makespan reached
by the BIG algorithm; and MkspMin defines the minimum
mekespan value obtained among all the compared algorithms.

The BIG algorithm is coded in C + + 8.0 and the
experiments are executed on an Intel Pentium IV 2.4 GHz
PC with 512 MB of memory.

The final experimental setup is given in Table V where
the main purpose of the experiment was to compare the
optimization performances of the algorithm under various
system conditions.

TABLE V
THE EXPERIMENTAL SETUP

Factors Pls q λ MCN
Values 0.2 0.3 2 100

A. Results on randomly generated instances

Before testing BIG algorithm on benchmark sets, the
computational experiments have been at first carried out on
a set of randomly generated instances obtained following the
procedure explained in Taillard.

In our tests, the problem sizes are determined by varying
the number of jobs and machines from 10 jobs and 3 machines
to 100 jobs and 10 machines as was the case in [28].

This choice is fixed such to make comparison between BIG
and BGA algorithm under this type of instances. Next, the
Cmax values of the best-found solutions for these generated
instances were memorized for each of the compared heuristics.

A statistic for the solution quality for each set is given
(Average RPD (ARPD)) as in Table VI. According to

TABLE VI
ARPD ON RANDOMLY GENERATED INSTANCES

Inst BIG BGA
10× 3 0,000% 0,000%
10× 5 0,000% 0,000%
10× 7 0,000% 0,000%
20× 3 0,000% 0,000%
20× 5 0,000% 0,000%
20× 7 0,000% 0,000%
50× 3 0,000% 0,000%
50× 5 0,007% 0,026%
50× 7 0,000% 0,013%
70× 3 0,010% 0,005%
70× 5 0,005% 0,063%
70× 7 0,000% 0,103%
100× 3 0,007% 0,026%
100× 5 0,006% 0,043%
100× 7 0,000% 0,077%
Avrg 0,002% 0,024%

the above table, the proposed algorithm is more likely to

get better solutions than BGA which is outperformed. For
small instances, the two algorithms behave in the same way.
Difference is observed by increasing the number of jobs.

B. Comparing BIG with leading heuristics

In this subsection, we enlarge the domain of comparison
and consider the BIG versus IG [21], MA [26], RAIS [23],
and BGA [28] algorithms.

From Table VII, we can observe that the proposed BIG gives
the best performance in terms of the overall solution quality,
since it yields the minimum overall mean ARPD value equal to
0, 041%, which is much better than those by the IG (0.744%),
MA (0.174%), RAIS (0.426%), and BGA (0.055%).

More specifically, the BIG gives much better APRD than all
compared heuristics and improves 86 out of 120 best-known
solutions of Taillard’s instances for the BFSP with the
makespan criterion. The worst results are given by the IG [21].

Indeed, BIG algorithm behaves much more effective than
the BIG algorithm as the size of instances increases. So,
regardless its simplicity, we may assert that the BIG algorithm
is an efficient heuristic in solving the BFSP and so may be
used as a basis of comparison for future research.

TABLE VII
ARPD ON TAILLARD INSTANCES

Inst BIG MA IG RAIS BGA
20×5 0,000% 0,000% 0,000% 0,000% 0,000%
20×10 0,000% 0,000% 0,000% 0,000% 0,000%
20×20 0,000% 0,000% 0,000% 0,000% 0,000%
50×5 0,022% 0,238% 0,322% 0,129% 0,032%
50×10 0,003% 0,199% 0,402% 0,203% 0,025%
50×20 0,005% 0,046% 0,267% 0,263% 0,030%
100×5 0,032% 0,572% 0,936% 0,109% 0,050%
100×10 0,027% 0,325% 1,032% 0,141% 0,058%
100×20 0,004% 0,245% 0,962% 0,242% 0,032%
200×10 0,000% 0,062% 0,631% 0,299% 0,015%
200×20 0,394% 0,052% 1,576% 0,936% 0,411%
500×20 0,001% 0,349% 2,805% 2,789% 0,011%
Avrg 0,041% 0,174% 0,744% 0,426% 0,055%

IV. CONCLUSION AND FUTURE WORK

In our study, BIG algorithm is proposed to solve the BFSP
under makespan measure. This greedy method is very simple,
and hybridized with a form of local search, enhanced much
more the solutions quality.

The algorithm is developed to solve both randomly
generated instances and a number of test problems (Taillard
instances). The experiment results attest that BIG is better than
other leading algorithms on all group instances specifically on
high dimensional problems.

In the future, we will hybridize our technique using some
hybrid evolutionary heuristics such as SA to improve its
performance and design some better NEH heuristic variant
to improve its efficiency.
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