

Abstract—We present an alternative method to the use of
overlapping as a distance measure in simple Lesk algorithm.
This paper presents an algorithm that uses Alpha-Beta
associative memory type Max and Min to measure a given
ambiguous word’s meaning in relation to its context, assigning to
the word the meaning that is most related. The principal
advantage of using this algorithm is the ability to deal with
inflectional and derivational forms of words, enabling the
possibility of bypassing the stemming procedure of words
involved in the disambiguation process. Different experiments
were performed, with two parameters as variables: the context
window size, and whether stemming was applied or not. The
experimental results (F1-score) show that our algorithm
performs better than the use of the overlapped metric in the
simple Lesk algorithm. Moreover, the experiments show that as
more information is added to the sense or meaning, and the
overlap metric is used, the precision of the simple Lesk algorithm
is decreased-in contrast to the performance of our algorithm.

Index Terms—Word sense disambiguation, simple Lesk
algorithm, Alpha-Beta associative memories.

I. INTRODUCTION
ATURAL Language Processing (NLP) is a
multidisciplinary area of research, in which the main

objective is to develop theories, algorithms, and technologies
that enable and strengthen communication between computers
and humans using languages that have naturally evolved in
human societies (e.g., English, Spanish, French, among
others.) instead of the constructed, formal languages that have
been employed to program computers. Examples of NLP
applications include knowledge management and discovery,
information retrieval, question answering, and machine
translation [1].

One of the biggest obstacles to human-computer interaction
is the prevalence of homonyms in many natural languages
(i.e. words that are said or spelled the same way but have
different meanings). For example, the word “bass” can refer
to a musical instrument, or a freshwater fish. In general,
humans are very good at figuring out the meaning of
ambiguous words; however, the automatic disambiguation of
words remains a difficult task for computers.

Manuscript received on April 24, 2016, accepted for publication on July 9,

2016, published on October 30, 2016.
The authors are with the Department of Computer Science, CUCEI –

Universidad de Guadalajara, Guadalajara, Mexico. Corresponding author:
Sulema Torres-Ramos (e-mail: sulema.torres@cucei.udg.mx).

Word sense disambiguation (WSD) is one of the central
topics of NLP [2]. WSD consists of automatically finding the
correct meaning of an ambiguous word in a text, simply by
analyzing the context in which it exists. Current WSD
methods can be classified into four categories [3]: supervised,
unsupervised, semi-supervised, and knowledge-based.

Supervised methods are characterized by the employment
of machine-learning techniques, for the purpose of creating
classification models based on a training set of hand-labeled
corpus that indicates the correct meaning of each ambiguous
word in a text. Unsupervised methods do not rely on training;
instead, they attempt to provide sense (i.e. meaning) labels by
generating clusters of word occurrences. Semi-supervised
methods start with a small hand-labeled training set, and
progressively improve the classification model, as it is used.
Knowledge-based methods make use of knowledge sources
such as collocations, thesauri, and dictionaries to assign a
sense to an ambiguous word, first by comparing each of its
possible definitions with those of other words in the context,
and then computing a semantic similarity metric of the
definitions.

Knowledge-based methods have recently been proven to
outperform supervised approaches in the presence of enough
knowledge, or within a knowledge-based domain, while
providing at the same time much wider coverage [4].

One of the main challenges of using a dictionary for
knowledge-based WSD methods is that the words in the
dictionary may be in different forms (e.g., verb, plural, root,
etc.), making it difficult to determine the degree of overlap
between a word and its respective meanings in the dictionary.
To overcome this problem, many of the knowledge-based
methods incorporate a stemming step in their algorithms,
which consist of reducing inflected (or sometimes derived)
words to their word stem, base, or root form.

On the other hand, an associative memory is a
computational tool that consists of structures that relate one or
more input patterns with an output pattern [5]. One of the
foremost properties and fundamental purposes of associative
memories is their ability to recall output patterns, despite
possible alterations or noise present in input patterns [6].
Associative memories eliminate the exhaustive search
operations common in indexed memory, and therefore are
very attractive in applications such as data mining and the
implementation of sets, where the computations can benefit
from the application’s specific functioning [7].

Unsupervised Word Sense Disambiguation
Using Alpha-Beta Associative Memories

Sulema Torres-Ramos, Israel Román-Godínez, and E. Gerardo Mendizabal-Ruiz

N

43 Polibits, vol. 54, 2016, pp. 43–51https://doi.org/10.17562/PB-54-6

IS
S

N
 2395-8618

Associative memory has been an active topic of research
for more than 50 years, and is still investigated both in
neuroscience and in artificial neural networks [8]. In
particular, Alpha-Beta associative memories have been
proven to be a powerful tool for pattern recognition tasks
when used in various scientific and technologic applications,
such as the classification of patterns in bioinformatics
databases [1], prediction of contaminant levels [10], image
encryption [11], and translation of Spanish to English [5].

In this paper, we present a method that employs Alpha-Beta
associative memory types Max and Min to determine how
related each definition of a word is to its context, and then
choose the correct definition or sense. Our method was tested
using the dataset for the SENSEVAL-2 “All-words” task,
with WordNet as the lexical resource. Six different
experiments were made, four of them not using a back-off
strategy and the remaining two, using it. A back-off strategy is
an alternative method that takes a decision when the principal
method cannot; the most common strategies used in WSD are:
random sense, and most frequent sense. For our purposes we
use random sense, because is considered an unsupervised
method.

Moreover, to measure the performance of the six different
experiments, three statistical metrics were used: precision,
recall, and F1-score. All of them were used when our method
does not implement a back-off strategy, conversely, when it
was used, we only report the F1-score. The latter given that,
when a method always take a decision (i.e. the coverage is
one hundred percent), the precision, recall, and F1-score are
the same.

The rest of the paper is organized as follows: Section II
presents the background and related work of simplified Lesk
and Alpha-Beta associative memories. Section III presents our
proposed method to replace overlapped metric. Section IV
describes the experimental resources and results, and in
Section V, conclusions derived from the experimental analysis
are presented.

II. BACKGROUND AND RELATED WORK

A. Simplified Lesk Algorithm
One of the most popular knowledge-based methods for

WSD is the Lesk algorithm [12], which is based on the
assumption that words occurring in a given section of text will
tend to share a common topic. This method consists of
obtaining definitions in a dictionary for each word in a given
text, and computes the relatedness between all those
definitions. The definitions with the greatest relatedness are
chosen as the correct senses of the words.

Since the Lesk algorithm may be computationally
expensive, a simple Lesk algorithm was proposed [13]. In this
method, the meaning of a word is determined by locating the
sense that overlaps the most between the definition of the
word in a dictionary, and neighboring words (context) of the
ambiguous word. In this approach, each word is processed

individually and independently of the meaning of other words
occurring in the same context.

B. Alpha-Beta Associative Memories
An associative memory is conceived as a system that

associates an input pattern (x) with an output pattern (y),
through a series of steps known as the learning phase building
matrix (M); on the contrary, to retrieve the input’s
corresponding output pattern, we present the input pattern to
the matrix according to the recall phase. The k-th associations
are stored in the matrix (M) and its ij-th component is denoted
by mij.

The associative memory M is built from a finite set of pre-
associated patterns, known as the fundamental set, and is
expressed as follows:

 { (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇) | 𝜇𝜇 = 1,2, … , 𝑝𝑝 } (1)

p being the cardinality of the fundamental set. Each pattern in
the fundamental set is called a fundamental pattern.

There are two categories for an associative memory: if it
holds for all fundamental patterns that the input and output
patterns to be associated are equals, then the memory M is
auto-associative, i.e. 𝑥𝑥𝜇𝜇 = 𝑦𝑦𝜇𝜇 ∀µ ∈ {1, 2, ..., p}. Otherwise,
if there exists one association where the input pattern is
different from the output pattern, then the memory M is called
hetero- associative i.e. ∃μ ∈ {1, 2, ..., p}, for which 𝑥𝑥𝜇𝜇 ≠ 𝑦𝑦𝜇𝜇.

One of the most important characteristics of an associative
memory is its ability to deal with a distortion or altered
version of the input vectors. It is expected that, if an altered
fundamental input vector (𝑥𝑥�k) is presented to the associative
memory, then the fundamental output pattern 𝑦𝑦𝑘𝑘 is recalled.
When this happens, we say that the recall is correct.

According to [14], the Alpha-Beta model presents two
binary operators designed specifically for these memories.
First, we defined the sets A = {0, 1} and B = {0, 1, 2}, and
operators α and β are defined in table 1. The sets A and B, the
α and β operators (see Table I), along with the usual ∧
(minimum) and ∨ (maximum) operators, form the algebraic
system (A, B, α, β, ∧, ∨) which is the mathematical basis for
the Alpha-Beta associative memories. This system presents
two types of memories: Alpha-Beta associative memory types
Max and Min; its name, functionality, and capacity to deal
with altered patterns depend on the use of minimum or
maximum operators in both learning and recalling phases.

The building of both Max and Min associative memories is
denoted by the operator ⊠, which is defined in Equation 2:

 [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�;
 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝}, 𝑖𝑖 ∈ {1,2, … ,𝑚𝑚}, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} (2)

C. Alpha-Beta Heteroassociative Memories with correct
recall

Alpha-Beta heteroassociative memories, unlike the
original [14] model and others [15], guarantee the correct
recall of the fundamental set [16]. In the following sections,

44Polibits, vol. 54, 2016, pp. 43–51 https://doi.org/10.17562/PB-54-6

Sulema Torres-Ramos, Israel Román-Godínez, E. Gerardo Mendizabal-Ruiz
IS

S
N

 2395-8618

we present the Alpha-Beta heteroassociative memory types
Max and Min, with which the complete recall of the
fundamental set is guaranteed [16].

Let A = {0,1}, n, p ∈ Z+, μ ∈ {1, 2, ..., p}, i ∈ {1, 2, ..., p}

and j ∈ {1, 2, ..., n}, and let x ∈ An and y ∈ Ap be input and
output vectors, respectively. The corresponding fundamental
set is denoted by {(xμ , yμ) | μ = 1, 2, ..., p}.

C.1. Alpha-Beta Heteroassociative Memories type Max

Learning phase
The fundamental set must be built according to the

following rules: first, all y vectors must be built according to
the one-hot codification, assigning for yμ the following
values: 𝑦𝑦𝑘𝑘

𝜇𝜇 = 1, and 𝑦𝑦𝑘𝑘
𝜇𝜇 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2, . . . , 𝑘𝑘 − 1, 𝑘𝑘 +

1, . . . ,𝑚𝑚} where 𝑘𝑘 ∈ {1,2,3, . . .𝑚𝑚}. Second, each yμ vector
must correspond to one and only one xμ vector, this is, both
vectors must belong to only one binary tuple (xμ, yμ) in the
fundamental set.

Step 1: For each 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝} from the couple (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇),
build the matrix: [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑚𝑚×𝑛𝑛

Step 2: Apply the binary ∨ operator to the matrices obtained
in step 1 to get the new Alpha-Beta heteroassociative
memory. Assign Max 𝑽𝑽 as follows: 𝑽𝑽 = ⋁ [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑃𝑃

𝜇𝜇=1 ,
with the ij-th component given by:

 𝑣𝑣𝑖𝑖𝑖𝑖 = ⋁ 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�𝑃𝑃
𝜇𝜇=1 (3)

Recalling phase

Step 1: Present pattern 𝒙𝒙𝜔𝜔 to 𝑽𝑽, complete the ∆𝛽𝛽 operation,
and assign the resulting vector to a vector called 𝒛𝒛𝝎𝝎: 𝒛𝒛𝝎𝝎 =
𝑽𝑽∆𝛽𝛽𝒙𝒙𝝎𝝎. The i-th component of the resulting column vector is:

 𝒛𝒛𝒊𝒊𝜔𝜔 = ⋀ 𝛽𝛽�𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝜔𝜔�𝑛𝑛
𝑖𝑖=1 (4)

Step 2: It is necessary to build a max sum vector s according
to Equation 5:

 𝑠𝑠𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1 (5)

where T ∈ Bn and its components are defined as

T𝑖𝑖 = �
1 ↔ 𝑣𝑣𝑖𝑖𝑖𝑖 = 1
0 ↔ 𝑣𝑣𝑖𝑖𝑖𝑖 ≠ 1

∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑖𝑖 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝒔𝒔 ∈ 𝒁𝒁𝑝𝑝

Therefore, the corresponding 𝒚𝒚𝝎𝝎 is given as

 𝑦𝑦𝑖𝑖𝜔𝜔 = �1 if 𝑠𝑠𝑖𝑖 = ⋁ 𝑠𝑠𝑘𝑘 ∧ 𝑧𝑧𝑖𝑖𝜔𝜔 = 1𝑘𝑘 ∈ 𝜃𝜃
0 otherwise

 (6)

where 𝜃𝜃 = {𝑖𝑖|𝑧𝑧𝑖𝑖𝜔𝜔 = 1} with ω ∈ {1,2, … ,𝑛𝑛}

C.2. Alpha-Beta Heteroassociative Memories type Min

Learning phase
The fundamental set must be built according to the

following rules: first, all y vectors must be built according to
the zero-hot codification, assigning for yμ the following
values: 𝑦𝑦𝑘𝑘

𝜇𝜇 = 0, and 𝑦𝑦𝑘𝑘
𝜇𝜇 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2, . . . , 𝑘𝑘 − 1, 𝑘𝑘 +

1, . . . ,𝑚𝑚} where 𝑘𝑘 ∈ {1,2,3, . . .𝑚𝑚}. Second, each yμ vector
must correspond to one and only one xμ vector, this is, both
vectors must belong to only one binary tuple (xμ, yμ) in the
fundamental set.

Step 1: For each 𝜇𝜇 ∈ {1,2, … , 𝑝𝑝} from the couple (𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇),
build the matrix: [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑚𝑚×𝑛𝑛

Step 2: Apply the binary ∧ operator to the matrices obtained
in step 1, to get the new Alpha-Beta heteroassociative
memory. Assign Min 𝜦𝜦 as follows: 𝜦𝜦 = ⋀ [𝑦𝑦𝜇𝜇 ⊠ (𝑥𝑥𝜇𝜇)𝑡𝑡]𝑃𝑃

𝜇𝜇=1 ,
with the ij-th component given by:

 𝜆𝜆𝑖𝑖𝑖𝑖 = ⋀ 𝛼𝛼�𝑦𝑦𝑖𝑖
𝜇𝜇 , 𝑥𝑥𝑖𝑖

𝜇𝜇�𝑃𝑃
𝜇𝜇=1 (7)

Recalling phase

Step 1: Present pattern 𝒙𝒙𝜔𝜔 to 𝜦𝜦, finish the 𝛻𝛻𝛽𝛽 operation, and
assign the resulting vector to a vector called 𝒛𝒛𝝎𝝎: 𝒛𝒛𝝎𝝎 = 𝜦𝜦𝛻𝛻𝛽𝛽𝒙𝒙𝝎𝝎.
The i-th component of the resulting column vector is:

 𝒛𝒛𝒊𝒊𝜔𝜔 = ⋀ 𝛽𝛽�𝜆𝜆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝜔𝜔�𝑛𝑛
𝑖𝑖=1 (8)

Step 2: It is necessary to build a min sum vector r according to
equation 9:

 𝑓𝑓𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1 (9)

where T ∈ Bn and its components are defined as

T𝑖𝑖 = �
1 ↔ 𝜆𝜆𝑖𝑖𝑖𝑖 = 0
0 ↔ 𝜆𝜆𝑖𝑖𝑖𝑖 ≠ 0

∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑖𝑖 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝒓𝒓 ∈ 𝒁𝒁𝑝𝑝

Therefore, the corresponding 𝒚𝒚𝝎𝝎 is given as

 𝑦𝑦𝑖𝑖𝜔𝜔 = �0 if 𝑓𝑓𝑖𝑖 = ⋀ 𝑓𝑓𝑘𝑘 ∧ 𝑧𝑧𝑖𝑖𝜔𝜔 = 0𝑘𝑘 ∈ 𝜃𝜃
1 otherwise

 (10)

where 𝜃𝜃 = {𝑖𝑖|𝑧𝑧𝑖𝑖𝜔𝜔 = 0} with ω ∈ {1,2, … ,𝑛𝑛}.

TABLE I
DEFINITIONS OF THE ALPHA AND BETA OPERATORS

 𝛼𝛼 ∶ 𝐴𝐴 × 𝐴𝐴 → 𝐵𝐵
 𝑥𝑥 𝑦𝑦 𝛼𝛼 (𝑥𝑥, 𝑦𝑦)
0 0 1
0 1 0
1 0 2
1 1 1

 𝛽𝛽 ∶ 𝐵𝐵 × 𝐴𝐴 → 𝐴𝐴
 𝑥𝑥 𝑦𝑦 𝛽𝛽 (𝑥𝑥, 𝑦𝑦)
0 0 0
0 1 0
1 0 0
1 1 1
2 0 1
2 1 1

45 Polibits, vol. 54, 2016, pp. 43–51https://doi.org/10.17562/PB-54-6

Unsupervised Word Sense Disambiguation Using Alpha-Beta Associative Memories
IS

S
N

 2395-8618

III. PROPOSED ALGORITHM

Considering that inflectional and derivational forms of
words affect the process of word sense disambiguation, we
propose an algorithm that diminishes the influence of those
syntactic phenomena present in the simple Lesk algorithm.

The proposed method replaces the overlap method used in
the original simple Lesk algorithm (with the use of Alpha-
Beta associative memory types Max and Min), providing one
with the ability to deal with an altered version of the words.
The following steps show the process of building an
associative memory per sense (i.e. one Max and one Min). In
the learning phase, the words in the definition of an
ambiguous word are used as a fundamental input pattern.
Once the memories are built, to assign a sense to an
ambiguous word, the context words (which may be an altered
version of any fundamental input pattern) are presented to
each pair of memories. At the end, a voting strategy applied to
the output patterns is used to assign a correct sense.

For example, take the sentence, “The man plays an
instrument in a band”. To disambiguate the word play, then:

1. The surrounding words and definitions (glosses) are
separated in different sets of words, one representing the
context and the remaining sets (as many sets as there are
meanings for the ambiguous word) corresponding to the
senses of the ambiguous word. For this example, we only
use the first three senses of the ambiguous word:
C1 = {instrument, band, man}
S1 = {game, sport, hocky, afternoon, cards}
S2 = {act, have, effect, specified}
S3 = {music, instrument, band, night}

2. Due to the binary domain of associative memory
operators, the words in the senses, and the context words,
are mapped to their corresponding binary representation;
for simplicity, we used the ASCII code.

C1 = {
c1 = (0110100101101110011100110111010001110010011

1010101101101011001010110111001110100),
c2 = (01100010011000010110111001100100),
c3 = (011011010110000101101110) }

S1 = {
x1 = (01100111011000010110110101100101),
x2 = (0111001101110000011011110111001001110100),
x3 = (0110100001101111011000110110101101111001),
x4 = (0110000101100110011101000110010101110010011

01110011011110110111101101110),
x5 = (0110001101100001011100100110010001110011) }

S2 = {
x1 = (011000010110001101110100),
x2 = (01101000011000010111011001100101),
x3 = (01100101011001100110011001100101011000110111

0100),
x4 = (01110011011100000110010101100011011010010110

0110011010010110010101100100) }

S3 = {
x1 = (0110110101110101011100110110100101100011),
x2 = (01101001011011100111001101110100011100100111

010101101101011001010110111001110100),
x3 = (01100010011000010110111001100100),
x4 = (0110111001101001011001110110100001110100) }

3. In order to have vectors with the same dimensions, the
missing components are filled with zeros or ones
depending on the Alpha-Beta associative memory used,
zeros for Max types and ones for Min types. In this
example, we filled them with zeros.

C1 = {
c1 = (0110100101101110011100110111010001110010011

1010101101101011001010110111001110100),
c2 = (0110001001100001011011100110010000000000000

0000000000000000000000000000000000000),
c3 = (0110110101100001011011100000000000000000000

0000000000000000000000000000000000000) }
S1 = {

x1 = (01100111011000010110110101100101000000000000
0000000000000000000000000000),

x2 = (01110011011100000110111101110010011101000000
0000000000000000000000000000),

x3 = (01101000011011110110001101101011011110010000
0000000000000000000000000000),

x4 = (01100001011001100111010001100101011100100110
1110011011110110111101101110),

x5 = (01100011011000010111001001100100011100110000
0000000000000000000000000000) }

S2 = {
x1 = (0110000101100011011101000000000000000000000

00000000000000000000000000000),
x2 = (0110100001100001011101100110010100000000000

00000000000000000000000000000),
x3 = (0110010101100110011001100110010101100011011

10100000000000000000000000000),
x4 = (0111001101110000011001010110001101101001011

00110011010010110010101100100) }
S3 = {

x1 = (01101101011101010111001101101001011000110000
000000000000000000000000000000000000),

x2 = (01101001011011100111001101110100011100100111
010101101101011001010110111001110100),

x3 = (01100010011000010110111001100100000000000000
000000000000000000000000000000000000),

x4 = (01101110011010010110011101101000011101000000
000000000000000000000000000000000000) }

4. For each sense, two fundamental sets are built: one
according to the associative memory type max (C.1), and
one for the associative memory type Min (C.2). Each word
in the sense is considered as a fundamental input pattern.

Input vectors:
Sense1 = { x1, x2, x3, x4, x5}
Sense2 = { x1, x2, x3, x4}
Sense3 = { x1, x2, x3, x4}

46Polibits, vol. 54, 2016, pp. 43–51 https://doi.org/10.17562/PB-54-6

Sulema Torres-Ramos, Israel Román-Godínez, E. Gerardo Mendizabal-Ruiz
IS

S
N

 2395-8618

Output vectors for type Max:
Sense1 = { yMax1 = (10000)t, yMax2 = (01000)t,

yMax3 = (00100)t, yMax4 = (00010)t,
yMax5 = (00001)t }

Sense2 = { yMax1 = (10000)t, yMax2 = (01000)t,
yMax3 = (00100)t, yMax4 = (00010)t }

Sense3 = { yMax1 = (10000)t, yMax2 = (01000)t,
yMax3 = (00100)t, yMax4 = (00010)t }

Output vectors for type Min:
Sense1 = { yMin1 = (01111)t, yMin2 = (10111)t,

yMin3 = (11011)t, yMin4 = (11101)t,
yMin5 = (11110)t }

Sense2 = { yMin1
 = (0111)t, yMin2 = (1011)t,

yMin3 = (1101)t, yMin4 = (1110)t }

Sense3 = { yMin1 = (01111)t, yMin2 = (10111)t,
yMin3 = (11011)t, yMin4 = (11101)t}

Six different fundamental sets are built, two per sense.
Sense 1

FSS1Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3),
(x4,yMax4), (x5,yMax5) }

FSS1Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3),
(x4,yMin4), (x5,yMin5) }

Sense 2
FSS2Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3),

(x4,yMax4) }
FSS2Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3),

(x4,yMin4) }
Sense 3

FSS3Max = { (x1,yMax1), (x2,yMax2), (x3,yMax3),
(x4,yMax4) }

FSS3Min = { (x1,yMin1), (x2,yMin2), (x3,yMin3),
(x4,yMin4) }

5. For each fundamental set, the corresponding associative
memory types Max and Min are built according to step 2
of sections C.1 and C.2of their respective learning phases.
At the end, two associative memories have been built for
each sense. We show the building of the matrices
corresponding to the third sense (MMax3 and MMin3).

Step 1:

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥31 = �

1
0
0
0

� ⊠ (0 1 1 0 1 1 0 … 0)

= �

2 1 1 2 1 1 2 … 2
1 0 0 1 0 0 1 … 1
1 0 0 1 0 0 1 … 1
1 0 0 1 0 0 1 … 1

�

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛31 = �

0
1
1
1

� ⊠ (0 1 1 0 1 1 0 … 0)

= �

1 0 0 1 0 0 1 … 1
2 1 1 2 1 1 2 … 2
2 1 1 2 1 1 2 … 2
2 1 1 2 1 1 2 … 2

�

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥32 = �

0
1
0
0

� ⊠ (0 1 1 0 1 0 0 … 0)

= �

1 0 0 1 0 1 1 … 1
2 1 1 2 1 2 2 … 2
1 0 0 1 0 1 1 … 1
1 0 0 1 0 1 1 … 1

�

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛32 = �

1
0
1
1

� ⊠ (0 1 1 0 1 0 0 … 0)

= �

2 1 1 2 1 2 2 … 2
1 0 0 1 0 1 1 … 1
2 1 1 2 1 2 2 … 2
2 1 1 2 1 2 2 … 2

�

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥33 = �

0
0
1
0

� ⊠ (0 1 1 0 0 0 1 … 0)

= �

1 0 0 1 1 1 0 … 1
1 0 0 1 1 1 0 … 1
2 1 1 2 2 2 1 … 2
1 0 0 1 1 1 0 … 1

�

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛33 = �

1
1
0
1

� ⊠ (0 1 1 0 0 0 1 … 0)

= �

2 1 1 2 2 2 1 … 2
2 1 1 2 2 2 1 … 2
1 0 0 1 1 1 0 … 1
2 1 1 2 2 2 1 … 2

�

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥34 = �

0
0
0
1

� ⊠ (0 1 1 0 1 1 1 … 0)

= �

1 0 0 1 0 0 0 … 1
1 0 0 1 0 0 0 … 1
1 0 0 1 0 0 0 … 1
2 1 1 2 1 1 1 … 2

�

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛34 = �

1
1
1
0

� ⊠ (0 1 1 0 1 1 1 … 0)

= �

2 1 1 2 1 1 1 … 2
2 1 1 2 1 1 1 … 2
2 1 1 2 1 1 1 … 2
1 0 0 1 0 0 0 … 1

�

Step 2:

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥3 = �

2 1 1 2 1 1 2 … 2
2 1 1 2 1 2 2 … 2
2 1 1 2 2 2 2 … 2
2 1 1 2 2 2 1 … 2

�

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1 0 0 1 0 0 1 … 1
1 0 0 1 0 1 1 … 1
1 0 0 1 1 1 0 … 1
1 0 0 1 0 0 0 … 1

�

The learning matrices MMax1, MMin1, MMax2, MMin2
are computed in the same fashion.

6. In order to assign a sense to an ambiguous word, its
context words are presented to each pair of associative

47 Polibits, vol. 54, 2016, pp. 43–51https://doi.org/10.17562/PB-54-6

Unsupervised Word Sense Disambiguation Using Alpha-Beta Associative Memories
IS

S
N

 2395-8618

memories. Given that each associative memory
corresponds to a sense, the resulting output vectors
represent the relation of the context word with said sense.
In this example, we present c3 vector to the MMax3 and
MMin3 matrices.

Step 1 Max:

𝑀𝑀𝑀𝑀𝑎𝑎𝑥𝑥3∆𝛽𝛽𝑐𝑐3 = �

2 1 1 2 1 1 2 … 2
2 1 1 2 1 2 2 … 2
2 1 1 2 2 2 2 … 2
2 1 1 2 2 2 1 … 2

�∆𝛽𝛽

⎝

⎜
⎜
⎜
⎜
⎛

0
1
1
0
1
1
⋮
0⎠

⎟
⎟
⎟
⎟
⎞

= �

0
0
1
0

�

Step 2 Max:

𝑧𝑧3 = �

0
0
1
0

� , 𝑠𝑠 = �

23
45
14
21

�

𝑦𝑦𝑀𝑀𝑎𝑎𝑥𝑥3 = �

0
0
1
0

�

Step 1 Min:

𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛3𝛻𝛻𝛽𝛽𝑐𝑐3 = �

1 0 0 1 0 0 1 … 1
1 0 0 1 0 1 1 … 1
1 0 0 1 1 1 0 … 1
1 0 0 1 0 0 0 … 1

�𝛻𝛻𝛽𝛽

⎝

⎜
⎜
⎜
⎜
⎛

0
1
1
0
1
1
⋮
0⎠

⎟
⎟
⎟
⎟
⎞

= �

1
1
0
1

�

Step 2 Min:

𝑧𝑧3 = �

1
1
0
1

� , 𝑠𝑠 = �

23
45
14
21

�

𝑦𝑦𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1
1
0
1

�

7. To adjust the resulting output vectors, derived from the
recall phase of the associative memory type Min (in
correspondence to the output vectors from associative
memory type Max), all their components are negated. This
is, a zero value is exchanged for 1, and vice versa.

𝑦𝑦𝑀𝑀𝑖𝑖𝑛𝑛3 = �

1
1
0
1

� → �

0
0
1
0

�

8. For all output vectors related to each learning matrix, the
sum of all components equal to 1 are computed (voting):

9. The sense corresponding to the learning matrix that has the
greatest votes is selected as the correct sense. If more than
one sense is selected, then the method is considered unable
to determine the sense for the ambiguous word. In this
example, the sense selected for the ambiguous word, with
a score of four, is the third sense.

IV. EXPERIMENTS

The performance of the proposed algorithm was assessed
using a semantically annotated corpus for SENSEVAL-2
English all-words task [17], and it was compared with results
from the simple Lesk algorithm.

SENSEVAL-2 is a dataset that consists of three documents
with 2,456 words in 238 sentences. It consists of three tasks:
1) "all-words", "lexical sample", and "translation task". Our
comparison is extracted from performances on the "all-words"
task. Our proposal, as with any other knowledge-based
algorithm, uses a machine readable dictionary; in this case, we
used WordNet.

To measure the performance of the two algorithms, the
statistical metrics precision, recall, and F1-score were
employed. They are statistical measures that evaluate several
aspects of the algorithms [18].

Precision indicates the fraction of retrieved instances that
are relevant. This is determined by the number of correct
answers, divided by the number of answers given by the
algorithm.

Learning
Matrix

Context
vector

Output
vector

Sum of
components

MMax1
c1 (00000)t 0
c2 (00000)t 0
c3 (00000)t 0

MMin1
c1 (00000)t 0
c2 (00000)t 0
c3 (00000)t 0

Total 0

MMax2
c1 (0000)t 0
c2 (0000)t 0
c3 (0000)t 0

MMin2
c1 (0000)t 0
c2 (0000)t 0
c3 (0000)t 0

Total 0

MMax3
c1 (0100)t 1
c2 (0010)t 1
c3 (0000)t 0

MMin3
c1 (0100)t 1
c2 (0010)t 1
c3 (0000)t 0

Total 4

48Polibits, vol. 54, 2016, pp. 43–51 https://doi.org/10.17562/PB-54-6

Sulema Torres-Ramos, Israel Román-Godínez, E. Gerardo Mendizabal-Ruiz
IS

S
N

 2395-8618

Recall is the fraction of relevant instances that are retrieved,
and is computed by the number of correct answers, divided by
the total number of words for which there is an answer.

F1-score is considered as a weighted average of precision
and recall. It is determined by (2PR) / (P + R).

Then, for each sentence in the corpus, and for each word in
the sentence, the word to be evaluated (the ambiguous word)
is separated from the surrounding words (context). Usually,
the senses of each word are expressed in a dictionary
(WordNet), as a definition or gloss. In addition to the gloss,
there is other information that could be used as an addendum
to increase the performance of the disambiguation algorithms.
Examples of such information are Synonyms (Syns) and
Hyponyms (Hypo). The former, are sets of words that have
similar meanings, the latter is a set of more specific
synonyms.

Four different experiments were prepared using the
information source mentioned before:
1) Gloss (G): only the information of the gloss
2) Gloss + Syns (G+S): the synonyms of the ambiguous word
added to its own gloss.
3) Gloss + Hypo (G+H): the hyponyms of the ambiguous
word added to its own gloss.
4) Gloss + Syns + Hypo (G+S+H): The gloss of the word
added to the hyponyms and synonyms.

V. RESULTS AND DISCUSSION

Tables II, III, IV, and V show the results of different
experiments, comparing our implementation of the simple
Lesk algorithm (SL) against the proposed method (AM). The
experiments were developed using two parameters as
variables: context window and stemming. It is worth noting
that the algorithms presented in these tables did not use a
back-off strategy.

The context window is the number of sentences used to
disambiguate a word. The possible values for this are: one
sentence (which is where the ambiguous word is), and three
sentences (the sentence where the ambiguous word is, the one
after, and the one before). There are two special cases in
context selection: a) when the ambiguous word is in the first
sentence, and b) when it is in the last sentence. For both cases,
only two sentences are considered: in the first sentence, the
window is composed using the sentence with the ambiguous
word and its following one. For the last sentence, the context
window is the sentence with the ambiguous word and its
preceding one. For each configuration, precision, recall, and
F1-score were computed.

On the other hand, stemming represents the reduction of a
word into a base form. This reduction could be applied (or
not) to the context and ambiguous words before the
disambiguation process.

Tables II and III show the experiments using the gloss
(table II), and gloss and synonyms (table III), as the source of

information to form the fundamental set of associative
memories. Both tables show that in the precision metric the
simple Lesk algorithm performs better than our proposal in
each experiment; this means that the simple Lesk algorithm is
more assertive when assigning a sense to a word. However
our proposal assigns a sense to more words, according to the
recall results. In addition, our proposal presents better results
as tested using F1-score metric. We can thus conclude from
these results that: a) considering the tradeoff between
precision and recall, our proposal performs better, and b) our
proposal is less dependent on the stemming process, given
that the differences between F1-score with and without
stemming are smaller than the ones reported from using the
simple Lesk algorithm.

Table IV reports the results of when the fundamental set
was constructed using the gloss and hyponyms. It shows that
each metric had a better performance compared with the ones
presented in table II and III, maintaining observed patterns.
This is, the simple Lesk outperforms our proposal in
precision, but our proposal performs better in recall and F1-
score. In addition, it is worth noting that the AM with a
context window of three, without stemming, surpasses the SL
in precision.

Table V presents the results of when the fundamental set
was the compound of the gloss, synonyms, and hyponyms. As
opposed to table III and IV, which present an increased
performance when more information was included in the
fundamental set, table V presents a decrease in performance

TABLE II
RESULTS USING THE GLOSS OF THE AMBIGUOUS WORD

 Context
window Stemming Precision Recall F1-Score

AM 1 Yes 42.11 17.56 24.78
SL 1 Yes 53.88 10.38 17.40
AM 1 No 49.18 15.47 23.53
SL 1 No 55.93 7.86 13.78
AM 3 Yes 47.86 25.34 33.13
SL 3 Yes 56.33 17.86 27.12
AM 3 No 53.07 22.91 32.00
SL 3 No 55.05 13.97 22.28

TABLE III
RESULTS USING THE GLOSS AND SYNONYMS OF THE AMBIGUOUS WORD

 Context
window Stemming Precision Recall F1-Score

AM 1 Yes 43.67 18.29 25.78
SL 1 Yes 54.97 10.64 17.82
AM 1 No 50.47 16.03 24.33
SL 1 No 56.20 8.33 14.50
AM 3 Yes 48.48 25.85 33.72
SL 3 Yes 57.29 18.46 27.92
AM 3 No 54.27 23.63 32.92
SL 3 No 56.73 14.96 23.67

49 Polibits, vol. 54, 2016, pp. 43–51https://doi.org/10.17562/PB-54-6

Unsupervised Word Sense Disambiguation Using Alpha-Beta Associative Memories
IS

S
N

 2395-8618

of all simple Lesk experiments in relation to table IV, whereas
just one AM experiment shows this performance decrement.
Moreover, as is the same as table IV, the AM presents a better
performance in all F1-scores and presents one case where the
AM precision is better than the simple Lesk Algorithm.

Meanwhile, Table VI shows the results of different
experiments, comparing the SL algorithm against AM using
random sense as a back-off strategy. The F1-score was
computed for each information source (G, G+S, G+H,
G+S+H), using one and three sentences as context window,
and with or without stemming. These experiments exhibit that
the AM algorithm does not outperform the SL algorithm for
all cases but one, when the context window size is one
sentence, without using stemming, and "G+H" as information
source, being the F1-score of 45.98.

On the other hand, Table VII presents the results of the AM
algorithm compared with two state-of-art algorithms, the
random base line (RBL), and the simple Lesk algorithm. The
state-of-art algorithms are: 1) a modified implementation of
simple Lesk algorithm which instead of selecting the
neighboring sentences as context window, it builds its own
context by selecting the words that do overlap at least in one
word with any gloss of the target word [19]; and 2) a word
sense disambiguation algorithm based on Bayes' theorem
which compute the a posteriori probabilities of the senses of a
polysemous word, then, the sense selected for a given
ambiguous word is that with the greater probability [20]

(hereinafter Modified SLA and NaiveBayesSM, respectively).
These results show that the AM performs better in three out of
four algorithms presented, but it is below to Modified SLA
which presents an F1-score of 47.8.

VI. CONCLUSIONS AND FUTURE WORK
Tables II to V present, among others metrics, the F1-scores

computed for both the associative memory and the original
simple Lesk approach. These show that the AM performs
better than the simple Lesk algorithm in all cases. In respect to
the precision metric, even when the simple Lesk algorithm
performs better than our proposal, Tables IV and V show two
cases where the associative memory approach outperforms it.
These two cases share a context window size of three (the
greatest size presented in this work), and the stemming
process was not applied. From this, it may be aptly concluded
that, in contrast to the simple Lesk algorithm, the associative
memory approach is beneficial when more information is
available. Furthermore, its performance is not severely
reduced when stemming is not applied.

On the other hand, Tables IV and V present interesting
outcomes: it seems that, the more data entered in the simple
Lesk algorithm for the “bag of words”, the more its precision
was decreased. If, for both tables, the experiments that
correspond to equal size context window –with the same
stemming option– are compared, we notice that the simple
Lesk algorithm has a reduced precision, if the gloss,
synonyms, and hyponyms conform to the bag of words.

Subsequently, Table VI show that when applying the
random sense back-off strategy, the SL reports a greater F1-
score except for one instance. It is important to note however,

TABLE IV
RESULTS USING THE GLOSS AND HYPONYMS OF THE AMBIGUOUS WORD

 Context
window Stemming Precision Recall F1-Score

AM 1 Yes 45.07 19.15 26.87
SL 1 Yes 53.89 10.94 18.18
AM 1 No 52.34 17.65 26.39
SL 1 No 56.37 8.50 14.77
AM 3 Yes 51.49 28.08 36.34
SL 3 Yes 56.55 18.63 28.02
AM 3 No 57.12 25.90 35.63
SL 3 No 56.67 14.70 23.34

TABLE V
RESULTS USING THE GLOSS, SYNONYMS AND HYPONYMS

 OF THE AMBIGUOUS WORD

 Context
window Stemming Precision Recall F1-Score

AM 1 Yes 46.21 19.79 27.71
SL 1 Yes 53.77 10.98 18.23
AM 1 No 53.55 18.03 26.97
SL 1 No 56.02 8.55 14.83
AM 3 Yes 51.41 28.03 36.27
SL 3 Yes 55.80 18.72 28.03
AM 3 No 57.70 26.11 35.95
SL 3 No 55.97 14.83 23.44

TABLE VI
RESULTS USING RANDOM SENSE AS A BACK-OFF STRATEGY

 Context
window Stemming G G+S G+H G+S+H

AM 1 Yes 44.06 43.46 43.97 44.02
SL 1 Yes 43.76 45.00 46.54 45.04
AM 1 No 45.30 44.57 45.98 45.90
SL 1 No 44.27 44.02 44.27 43.76
AM 3 Yes 42.78 43.42 44.49 43.29
SL 3 Yes 47.31 47.52 47.14 46.50
AM 3 No 44.15 43.80 44.49 45.00
SL 3 No 43.93 46.54 45.81 46.58

TABLE VII
STATE-OF-ART COMPARISON

 Context
window Stemming F1-Score

Modified SLA 1 - 47.8
AM 1 No 45.98
SL 1 No 44.27

RBL - - 41.22
NaiveBayesSM 1 Yes 36.2

50Polibits, vol. 54, 2016, pp. 43–51 https://doi.org/10.17562/PB-54-6

Sulema Torres-Ramos, Israel Román-Godínez, E. Gerardo Mendizabal-Ruiz
IS

S
N

 2395-8618

that most of the cases where the SL performs better (Table
VI) are those where the SL without back-off strategy (Table
V), presented a bigger F1-score difference between both
algorithms. Therefore, it is possible to infer that when
combining a back-off strategy with the SL algorithm, the
smaller the F1-score, the fewer decisions are taken by it, then,
the back-off randomly choose a sense, and, if the target word
has a few senses, it is more likely select the correct one;
improving the overall performance. The only instance where
the AM comes out better is that where F1-score presents a
shorter difference between AM and SL (Table V).

Finally, even when random sense back-off strategy is
combined with AM, it does not succeed over Modified SLA.
It may be because of the words with which the context are
built, are those that appear, at least, one time in any gloss of
the word to disambiguate; being more likely selecting the
correct sense when the gloss shares one word than those that
does not.

In future work, a search for different binary codifications
will be made; then, their corresponding implementations will
be tested to find the codification that best fit the
disambiguation purposes. Another interesting approach to
research involves changing the lexical resources
(dictionaries), and performing a set of experiments to identify
the advantages and disadvantages that are present in each of
them. Also, it would be interesting to combine the context
building strategy presented by Viveros-Jimenez et al. [19]
with our proposal. Finally, in order to increase the response
time of the algorithm, a CUDA implementation of our
proposal will be made.

In addition, on our future work we plan to explore the role
of our WSD method in important tasks where the meaning of
ambiguous words plays an important role, such as sentiment
analysis [21], [22], [23], sarcasm detection [24], and textual
entailment [25].

REFERENCES
[1] G. Hirst, E. Hovy, and M. Johnson, “Theory and Applications of

Natural Language Processing”, 2013.
[2] R. Navigli, and N. Lapata, “An experimental study of graph

connectivity for unsupervised word sense disambiguation”, IEEE
transactions on pattern analysis and machine intelligence, vol. 32, num.
4, pp. 678-692, 2010.

[3] P.P. Borah, G. Talukdar, and A. Baruah, “Approaches for Word Sense
Disambiguation–A Survey”, International Journal of Recent
Technology and Engineering, vol. 3, no. 1, 35–38, 2014.

[4] R. Navigli, “A quick tour of word sense disambiguation, induction and
related approaches”, In International Conference on Current Trends in
Theory and Practice of Computer Science, Springer, pp. 115-129, 2012.

[5] T. Kohonen, “Self-organization and associative memory”, Springer-
Verlag, Berlin. 1989.

[6] M.E. Acevedo-Mosqueda, C. Yáñez-Márquez, and I. López-Yáñez,
“Alpha–Beta bidirectional associative memories: theory and
applications”, Neural Processing Letters, vol. 26, no 1, p. 1-40, 2007.

[7] H. Jarollahi, N. Onizawa, V. Gripon, et al. “Algorithm and architecture
of fully-parallel associative memories based on sparse clustered
networks”. Journal of Signal Processing Systems, vol. 76, no 3, p. 235-
247, 2014.

[8] G. Palm, "Neural associative memories and sparse coding" Neural
Networks, vol. 37, pp. 165-171, 2013.

[9] I. Román-Godínez, I. López-Yánez, and C. Yánez-Márquez.
"Classifying patterns in bioinformatics databases by using Alpha-Beta
associative memories." In Biomedical Data and Applications, Springer,
pp. 187-210, 2009.

[10] I. Román-Godínez, "Identification of functional sequences using
associative memories" Revista Mexicana de Ingeniería Biomédica,
vol. 32, no. 2, pp. 109-118, December, 2011.

[11] A. Argüelles, C. Yáñez, I. López, and O. Camacho, "Prediction of CO
and NOx Levels in Mexico City Using Associative Models." Artificial
Intelligence Applications and Innovations, vol. 364, pp. 313-322, 2011.

[12] M. Lesk, “Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone”, in Proc.
of the 5th annual international conference on Systems documentation,
pp. 24-26, 1986.

[13] A. Kilgarriff, and J. Rosenzweig, “Framework and results for English
SENSEVAL”, Computers and the Humanities, vol. 34, no. 1-2, pp. 15-
48, 2000.

[14] C. Yánez, “Memorias Asociativas basadas en Relaciones de Orden y
Operadores Binarios”, Ph.D. thesis. CIC-IPN, Mexico, 2002.

[15] G. X. Ritter, P. Sussner, and J.L. Diaz-de-Leon, “Morphological
associative memories”, IEEE Transactions on Neural Networks, vol. 9,
pp. 281-293, 1998.

[16] I. Román-Godínez, and C. Yáñez-Márquez, “Complete recall on Alpha-
Beta heteroassociative memory”. In Proc. MICAI, pp. 193-202, 2007.

[17] M. Palmer, C. Fellbaum, S. Cotton, L. Delfs, and H. T. Dang, “English
tasks: All-words and verb lexical sample”, in Proc. SENSEVAL-2, pp.
21-24, 2001.

[18] R. Navigli, “Word sense disambiguation: A survey”, ACM Computing
Surveys (CSUR), vol. 41, no. 2, 2009.

[19] F. Viveros-Jiménez, A. Gelbukh, and G. Sidorov. “Simple window
selection strategies for the simplified lesk algorithm for word sense
disambiguation”. In Mexican International Conference on Artificial
Intelligence, Springer, pp. 217-227, 2013.

[20] T. Wang and G. Hirst. Applying a Naive Bayes Similarity Measure to
Word Sense Disambiguation. In ACL (2), pp. 531-537, 2014.

[21] S. Poria, E. Cambria, A. Gelbukh, F. Bisio, and A. Hussain. “Sentiment
data flow analysis by means of dynamic linguistic patterns”, IEEE
Computational Intelligence Magazine, vol. 10, no. 4, pp. 26-36, 2015.

[22] S. Poria, E. Cambria, and A. Gelbukh. “Aspect extraction for opinion
mining with a deep convolutional neural network”, Knowledge-Based
Systems, vol. 108, pp. 42-49, 2016.

[23] E. Cambria, S. Poria, R. Bajpai, and B. Schuller. “SenticNet 4: A
semantic resource for sentiment analysis based on conceptual
primitives”. In: COLING 2016, Osaka, pp. 2666-2677, 2016.

[24] S. Poria, E. Cambria, D. Hazarika, and P. Vij. “A deeper look into
sarcastic tweets using deep convolutional neural networks”. In:
COLING 2016, Osaka, pp. 1601-1612, 2016.

[25] P. Pakray, S. Neogi, P. Bhaskar, S. Poria, S. Bandyopadhyay, and A.
Gelbukh. “A textual entailment system using anaphora resolution”. In:
System Report. Text analysis conference recognizing textual entailment
track notebook, 2011.

51 Polibits, vol. 54, 2016, pp. 43–51https://doi.org/10.17562/PB-54-6

Unsupervised Word Sense Disambiguation Using Alpha-Beta Associative Memories
IS

S
N

 2395-8618

