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Abstract—This paper presents a large-scale extreme multi-
label hierarchical text classification method that employs
a large-scale hierarchical inductive learning and deductive
classification (IN-DEDUCTIVE) approach using different
efficient classifiers, and a DAG-Tree that refines the given
hierarchy by eliminating nodes and edges to generate a
new hierarchy. We evaluate our method on the standard
hierarchical text classification datasets prepared for the PASCAL
Challenge on Large-Scale Hierarchical Text Classification
(LSHTC). We compare several classification algorithms on
LSHTC including DCD-SVM, SVM?*"/| Pegasos, SGD-SVM,
and Passive Aggressive, etc. Experimental results show that
IN-DEDUCTIVE approach based systems with DCD-SVM,
SGD-SVM, and Pegasos are promising and outperformed other
learners as well as the top systems participated in the LSHTC3
challenge on Wikipedia medium dataset. Furthermore, DAG-Tree
based hierarchy is effective especially for very large datasets
since DAG-Tree exponentially reduce the amount of computation
necessary for classification. Our system with IN-DEDUCIVE and
DAG-Tree approaches outperformed the top systems participated
in the LSHTC4 challenge on Wikipedia large dataset.

Index Terms—Hierarchical text classification, multi-label
learning, indexing, extreme classification, tree-structured class
hierarchy, DAG- or DG-structured class hierarchy.

I. INTRODUCTION

TATISTICAL Natural Language Processing (NLP) is now

facing various “Big Data” challenges. In machine learning
(ML)-based text classification (TC), the current front-line of
“Big Data” deals with millions of training and test documents
as well as hundreds of thousands, or even millions of
labels. Although strong ML methods such as Support Vector
Machines (SVMs) [1], [2], [3] have been successfully applied
to TC, such large-scale datasets are often handled with a
light-weight classifiers, such as k-nearest neighbors [4], or by
information retrieval-based approaches [5].

In general, ML-based TC can be categorized into two
classification tasks: a flat classification (FC) by referring to
standard binary or multi-class classification problems and a
hierarchical classification (HC)- typically a tree, a directed
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acyclic graph (DAG), or a directed graph (DG) is incorporated,
where the classes to be predicted are organized into a class
hierarchy. A very large amount of research in TC, data
mining (DM), and related researches have focused on FC
problems. In contrast, many important real-world classification
problems are naturally cast as HC problems. In large-scale
hierarchical text classification (LSHTC) tasks, the size of data
is too large to analyze the suitable classifiers. Therefore, it
is still an open and more challenging problem to design a
model that classifies large-scale documents into large-scale
hierarchically-structured categories that correspond to classes
accurately and efficiently. The benefit of hierarchical text
classification (HTC) approach is the efficiency. In the training
stage, deeper in the hierarchy the category is located, less
data need to be handled by classifiers on average. Because
of this, total training time can be drastically reduced. In the
classification stage, the complexity to decide a category as
the assignment for a sample will be O(logn) with n leaf
categories.

In this direction, this paper present an approach that refines
the DG and generates a DAG-Tree hierarchy where DAG and
tree are incorporated together, in order not only to drastically
reduce training and test time but also to significantly improve
the classification performance; especially when the hierarchy
is too large and the training data for each class is sparse. We
built an accurate and efficient LSHTC system and applied it
to Wikipedia medium dataset (WMD) and Wikipedia large
dataset (WLD), which treat a typical multi-label TC problem
to automatically assigning Wikipedia hierarchical categories
to a document. These tasks of assigning Wikipedia categories
to documents are included in the third (LSHTC3') and forth
(LSHTC4?) editions of PASCAL challenge.

The remainder of the study is organized as follows. Section
2 describes the base ML algorithms. In Section 3, we elaborate
the proposed inductive learning and deductive classification
approaches for hierarchical learning. Section 4 presents a
hierarchy refinement approach for very large-scale hierarchical
classification. Section 5 shows the experiment results with
discussions. Finally, we conclude the study in Section 6.

Thttp://Ishtc.iit.demokritos.gr/LSHTC3_CALL
Zhttp://Ishtc.iit.demokritos.gr/
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II. BASE ML ALGORITHMS

The section briefly describes the efficient base learners:
SGD-SVM, Pegasos, and DCD-SVM.

A. SGD-SVM

Stochastic Gradient Descent SVM (SGD-SVM) [6] is an
incremental training algorithm for SVMs. It randomly selects
a sample and adjusts the weight vector. Given a loss function
0(; (z,y)), SGD-SVM solves the following primary SVM
optimization problem directly:

min 2+ 1 Y0 A (7)) m
w2 N T

(Z,y)eD

where 0 is an weight vector, D is a set of N pairs of samples
and their labels, and A is a regularization parameter. The
weight vector at a time step ¢ is updated as:

Wiy = Wy — 0 S~ (ABy + 0 (W (Tog1, Yeg1))Tegr)  (2)

where S is a symmetric positive definite matrix, regarded as
a pre-conditioner.

B. Pegasos

Primal Estimated sub GrAdient SOlver for SVM (Pega-
sos) [7] is an efficient training algorithm for SVMs. Pegasos
alternates stochastic gradient decent steps and projection steps.
In the projection step, the current weight vector is re-scaled to
fit the Ly-ball of radius 1/+/\. For a randomly chosen sample
(Z¢, y¢) and a weight vector W, at a time step ¢, if y, -y < 1,
Pegasos updates the weight vector as follows:

“_"H% = (1 = e A)Wy + 0eye T 3)
1
o _ . BN o
Wi41 = Mn 17 ||’U_jt+% || wt-i—%' “4)

C. DCD-SVM

Dual coordinate decent support vector machine (DCD-
SVM) [8] randomly selects a weight vector @ and updates
the weight vector as:

where « is the current value and «; is the target value.
The optimization process starts from an initial point & €
R! and generates a sequence of vectors {@*}2°. We refer to
the process from @* to @**! as an outer iteration. In each
outer iteration, we have [ inner iterations, so that sequentially
updates o, ao, ..., ay. In updating @5 to @1, the process
must find the optimal solution as:

) : Vi kot
o = min (maw (af’z - M’O) ,C> (6
zr-

i
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where C' > 0 is a penalty parameter and set to 0.5 based on
our pilot study. V; f is the i-th component of the gradient V f,
and V,; f (a*7) is set as:

Vif (@) = yw" -7 — 1. (7)

The process move to index ¢ + 1 with updating af’i, if and
only if the projected gradient VI f (a*%) # 0 and satisfy the
following conditions,

V.if (&) if 0 <a; <C,
V(@) = {min(0,V,f () if a; =0, ®)
max (0, V,;f (&) if a; =C.

III. IN-DEDUCTIVE APPROACH

IN-DEDUCTIVE (inductive learning and deductive classi-
fication) is a hierarchical learning and classification approach
for classifying large-scale documents into a large-scale
hierarchically structured categories (category hierarchy)
accurately and efficiently. The IN-DEDUCTIVE approach
follows the bottom-up propagation with edge-based training,
top-down classification approach with global adjustments, and
global pruning.

A. Inductive Learning on Category Hierarchy

The inductive learning induces a set of observed instances
or samples from specific bottom categories to general top
categories in the category hierarchy.

1) Bottom-up Propagation: Since only leaf categories are
assigned to data, first we propagate training samples from
the leaf level to the root in the category hierarchy. Fig. 1
illustrates propagation of documents in a hierarchy consisting
of six categories A-F. In this figure, sample z; is assigned
to categories D and E, z2 to D, and x3 to F. Let us look
at the case of x; assigned to E. z; of E is propagated to
both categories B and C. Then, z; of B is propagated to
A. When z; is propagated from C to A afterwards, to avoid
redundant propagation, the propagation of x; (originally from
E via C) terminates at A, even if A had a parent category. To
perform the propagation of the sample, we employ a recursive
algorithm. Steps 1-13 for bottom-up propagation in Algorithm
1 are described in pseudo-code. Samples are propagated in a
DAG in the bottom-up manner.

2) Edge-based Training: Based on the propagation of
training samples in the hierarchy, we train classifiers for each
edge of the hierarchy to estimate how strong the samples of
the parent node are related to the child nodes. Each edge is
coupled with a binary classifier using the one-against-the-rest
approach. In Fig. 2 at node B, x; and x are assigned to node B
during the bottom-up propagation. Since edge-based learning
is in concern, the model Mpp is trained in the hierarchy as
to classify both x; and z5 to D; whereas the model Mgpg
is trained as to classify z; to E but not x5 to E. Mpp is
trained without negatives. Training models on local branches
is beneficial in restricting the number of samples. It is also
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effective to reduce positive-negative data imbalance. Another
benefit of this edge-oriented classification is that a classifier
can capture local characteristics of data distribution. Naturally,
x classified into E from node B and z; from node C should
need different considerations, since the former is classification
based on x; and x5 and the later is based on z; and x3, and
thus Mpg and Mcp will be different models. Edge-based
training is described in the steps 14-34 in Algorithm 1.

B. Deductive Classification on Category Hierarchy

The deductive classification deduces a set of unlabeled
samples from general top categories to more specific bottom
categories in the hierarchy.

1) Efficient Top-down Classification: Fig. 3 illustrates top-
down classification of a test sample #. First, ¥ is classified
to B and C, based on the decision by M 4p(Z) and Mac(Z),
respectively. The decision is made by:

Gpe(E) = W - & + bpe. )

To adjust the effect of positive-negative sample imbalance, we
set a bias 5. When G,.(Z) > 8, & is classified from parent
category p to child category ¢. When both G 45(Z) > § and
Gac(Z) > B are satisfied, Z is classified into both B and C.
Note that the standard bias term by, is automatically tuned for
each edge in the training stage. Usually, the dot product can be
calculated efficiently with the dot product of sparse vectors [9].
For the first calculation of the dot product in the classification
stage, the dot product can be calculated as follows:

W-T= E

i:1..5tz€[Tindex)

w[xindex [ZH * xvalue[i]; (10)

where w is an weight vector array and x;pge; and Zygiue
represent a sparse vector of sample x. Top-down classification
is described in the steps 35-53 Algorithm 1. The classification
procedure is initiated with TOP-DOWN-CLASSIFY (x,root,1).

C. Global Pruning

After the classification of a test sample x throughout the
hierarchy, we prune unlikely classes for x. We define a
confidence score and set the global threshold 6 for it. When
x reaches a leaf node n, the confidence score c,(x,n) is
calculated as follows:

Co(z,n) = H

(n1,n2)€E

UO&(Gnlnz(l‘)))’ (11)

where E is a set of edges that x has followed in the path
from the root to the leaf n. The output value of a classifier is
converted to [0, 1] range by:

()

a is set to 2 from our pilot study. When there are multiple
nodes assigned to z, if c(z,n) <6, the assignment of x to n
is removed. Fig. 4 illustrates the global pruning. In Fig. 4, x

1

1 + exp(—azx)’ (12)
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is classified into D and F. Here the confidence scores of = in
D and F is 0.21 and 0.09 respectively. When 6 = 0.3, both of
the confidence scores are below the threshold. However, we
need at least one category for every test sample. Therefore,
only assignment of = to F is removed.

IV. HIERARCHY REFINEMENT: DAG-TREE

Since IN-DEDUCTIVE is a edge-oriented approach that
increases the computational cost of training and test
by building hundreds of thousands, or even millions of
classification models. To reduce the computational cost in
training and test as well as to improve the classification
performances, we introduce a hierarchy refinement approach
and generate a DAG- and tree-based hierarchy; especially from
very large directed graph which contains cycles and multiples
roots in the hierarchy.

DAG-Tree incorporates DAG and tree substructures together
into a same graph to refine the given hierarchy. In the
DAG-Tree approach, lead nodes contain multiple parents
where from intermediate nodes to root nodes in the hierarchy
contain single parent in the hierarchy. To generate the
DAG-Tree hierarchy, we split the given hierarchy into
three indexing system. In the LEAF-INDEX, all the leaf
categories (leaf contains only parent) in the hierarchy
are associated. In the INTER-INDEX, all the intermediate
categories (Intermediate nodes contain both parent and child)
in the hierarchy are associated. Finally, in the ROOT-INDEX,
root categories (Root contains only children) in the hierarchy
are associated. From leaf level to intermediate level in the
DAG-Tree hierarchy, a leaf node can have more than one
parents. From intermediate levels to top level, a node contains
only one parent in the DAG-Tree hierarchy.

To handle large data using hierarchy, we introduce a bottom-
up based DAG-Tree. The primary motivation of creating DAG-
Tree is to remove all cycles by ignoring nodes and edges that
have been already visited in the paths from leaf to root in
the intermediate levels. Any parent-child relations that would
lead to cycle are omitted. Fig. 6 shows an example DAG-Tree
categories hierarchy.

DAG-Tree is a visited-paths based approach. In the visited-
paths, DAG-Tree keeps record all the parents list of a certain
leaf or intermediate node. If any parent of a certain leaf or
intermediate node appears in the visited-paths list, DAG-Tree
immediately stores the last parent record by terminating the
process and accesses the next parent of a certain leaf in the
hierarchy. In Figures 5 and 6, the bottom and top gray circles
indicate the leaf and root nodes respectively; as well as circles
in the dotted rectangle indicate the intermediate nodes. First
we generate a leaf to root paths using bottom-up manner and
invoke the paths as a reference-path for every parents of a
certain leaf to reach root node. The procedures in Fig. 7 show
a DAG-Tree generation from the hierarchy in Fig. 5.

Algorithm 2 shows the visited-paths based DAG-Tree
generation algorithm. Compare to Fig. 5, Fig. 6 shows many
nodes and edges, including intermediate node G and root node
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Algorithm 1. IN-DEDUCTIVE Approach for LSHTC
1: procedure BOTTOM-UP-PROPAGATE(NODE, SAM-

PLES)
2 if sample is already assigned to node then
3 return,
4: else
5: Assign sample to node;
6 end if
7 if node is the root then
8 return;
9: end if
10: for all p in the parents of node do
11: BOTTOM-UP-PROPAGATE(p, sample)
12: end for

13: end procedure
14: procedure TRAIN(NODE)

15: if sample is already explored then

16: return;

17: end if

18: if node is a leaf then

19: return,

20: end if

21: Let X be the set of samples assigned to node;
22: Let Y be the set of labels for X

23: for all n in the children of node do

24: for all x; in X do

25: if x; is assigned to n then

26: Y; < +1;

27: else

28: Yy < —1;

29: end if

30: end for

31: Train classification model My, 44e¢,», on (X,Y)
32: TRAIN(n)

33: end for

34: end procedure

35: procedure TOP-DOWN-CLASSIFY (z, node, conf)

36: if node is a leaf node then

37: assign x to node;

38: end if

39: if node is a leaf then

40: co(x,node) < max(con f,old(c,(z,node));

41: else

42: col(z,node) < conf;

43: end if

44: for all n in the children of node do

45: if Grode,n > O then

46: TOP-DOWN-CLASSIFY (x, n, con f *
U(Gnode,n(x)));

47: end if

48: end for

49: if None of child nodes satisfies M,,4e, n(x) > [ then

50: n' = argmaxGpode,n (T);

51: TOP-DOWN-CLASSIFY (z, n/, con f *
U(Gnode,n’ (fﬂ))),

52: end if

53: end procedure

Polibits, vol. 54, 2016, pp. 61-70
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C, are eliminated during the DAG-Tree generation process. We
then extend the intermediate nodes by including the root nodes
and connect all the root nodes to a single root Z.

V. EXPERIMENTAL SETTINGS

In this section, we provide empirical evidence for the
effectiveness of our proposed IN-DEDUCTIVE and DAG-Tree
approaches.

A. Base ML Algorithms

We employ sofia-ml® for the experiments with Pagasos,
SGD-SVM, Passive Aggressive (PA) [10], Relaxed Online
Margin Algorithm (ROMMA) [11], and Logistic regression
with Pegasos projection (logreg-pegasos). For Pegasos and
SGD-SVM, we use the SVM regularization parameter C
where A\ = CLN and the number of iteration is set to
max (10000, 100NV). Moreover, Svmrers [12], [13] is adopted,
and the SVM parameters C' for SVMP"f is given as CPe"/ =
NC/100, where N is the number of samples of each edge.
Note that CP¢"f varies in each node during the top-down
training since C?°"/ depends on N.

B. Term Weighting Approaches

We compare several term weighting methods: term fre-
quency (TF), TEIDF, and four class-oriented indexing-based
weighting methods.

TF is a very simple, conventional, and baseline term
weighting method in the information retrieval task and it is
defined as:

Wrr(ti,d) =tfu, q), (13)

where ¢f(t;,d) is the number of occurrences of term ¢; in
document d.

The common document-indexing-based TEIDF is defined
as:

D
Wrripr(ti,d) = tf, a4 X (1 + log #(tz)) ; (14)

where D denotes the total number of documents in the training
corpus, #(t;) is the number of documents in the training
corpus in which term ¢; occurs at least once, D/#(t;) is the
inverse document frequency (IDF) of term ¢;.

As for the class-oriented indexing-based methods [14], [15],
we employed four following methods defined as:

C
Wrrpircr(ti,d, ck) = tf,,a) X (1 +log c(tl)) S
TF.ICSsF\li, @, Ck) = U](¢;,d) & C’S(s(tz) ’
D
Wrripricr(ti,d,cr) = tf, a) ¥ <1 +log )
#(ti)
a7
1+log——=
< (11005 ) e

3http://code.google.com/p/sofia-ml/
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)

C )
CSg(ii) ’
(18)

D
Wrripr.iossr(ti,d,cx) = tfu,.a) ¥ (1 + log )

X (1+1og

where C' denotes the total number of predefined categories
in the training corpus, ¢(t;) is the number of categories in the
training corpus in which term ¢; occurs at least once, T% is

the ICF of the term ¢;, and ﬁ(t) is the (ICSsF) of term t;.

Please refer to [14], [16] for more details.

C. Datasets

To evaluate the performance of our proposed IN-
DEDUCTIVE and DAG-Tree approaches, we compare our
results with WMD and WLD which considering two standard
datasets for LSHTC.

1) Wikipedia Medium Dataset: The Dataset* consists of
456,866 training documents with 346,299 distinct features
and 81,262 test documents with 132,296 distinct features. It
contains 36,504 leaf categories and 50,312 categories in the
hierarchy with maximum depth 12. The number of edges in
the hierarchy are 65,333. The category hierarchies of WMD
is in the form of DAG.

2) Wikipedia Large Dataset: The Dataset® consists of
2,365,436 training data with 1,617,899 distinct features and
452,167 test data with 627,935 distinct features. It contains
325,055 leaf categories and 478,020 categories in the hierarchy
with maximum depth 15. The number of edges in the hierarchy
are 863,261. The category hierarchies of WLD are in the form
of DG.

D. Performance Measures

We employ official LSHTC3 and LSHTC4 evaluation
metrics [17]. Given documents D, correct labels Y;, and
predicted labels Z;, the metrics are as follows:

e Accuracy(Acc): 1/|D|> ", p [Ya N Zi|/ (|Ys U Z;i))

e Example-based F1 measure (EBF): 1/|D[> ., 2|Y; N

Zil/ (V] + |Z])
e Label-based Macro-average F1 measure (LBMaF):
Standard multi-label Macro-F1 score

e Label-based Micro-average F1 measure (LBMiF): Stan-

dard multi-label Micro-F1 score

e Hierarchical F1 measure (HF): The example-based

Fl-measure counting ancestors of true and predicted
categories

We evaluated our systems on LSHTC evaluation site®
because the gold standard labels for the test data of WMD
and WLD are not publicly available.

“http://lshtc.iit.demokritos.gr/LSHTC3_DATASETS
Shttp://Ishtc.iit.demokritos.gr/LSHTC4_GUIDELINES
Shttp://Ishtc.iit.demokritos.gr/
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Algorithm 2. Bottom—up DG to DAG-Tree Generation
1: procedure DAG-TREE(LEAF-INDEX,
INTER-INDEX, ROOT-INDEX)
while LEAF-INDEX leaf is not empty do
parentLeaf < leaf.parentList
LEAF-ROQOT ((parentLeaf)
end while
return path
end procedure
procedure LEAF-ROOT (PINDEX)
while pIndex.curParent is not empty do
10: if cur Parent is in ROOT-INDEX then
VISITED-PATH(lea f, cur Parent)
12: else

R e A A S o

—
—_

13: childInter < curParent
14: INTER-NODES(childInter)
15: end if

16: end while

17: end procedure
18: procedure VISITED-PATH(leaf, p)
19: path.leaf.pathList < p

20: if all parents of a leaf are explored then

21: goto step2: for next lea f

22: else

23: explore parent of LEAF- or INTER-INDEX
24: end if

25: end procedure
26: procedure INTER-NODES (inter)
27: while INTER-INDEX.inter is not empty do

28: parentlnter < inter.parentList
29: LEAF-ROOT (parentInter)
30: end while

31: end procedure

E. Experimental Environments

We assessed the training and classification time using a
single Xeon 3.0GHz core with 96GB memory for WMD and
396GB memory for WLD. The feature values in the LSHTC3
and LSHTC4 datasets represent the number of occurrences of
each unigram. From Eqns. 13-18, we scaled the feature value
with the function v/(v + 1) where v is the original feature
value.

VI. RESULTS AND DISCUSSION

In this section, we provide empirical evidence of the IN-
DEDUCTIVE approach and the effectiveness of the DAG-Tree
approach in very large-scale datasets.

A. DG to DAG-Tree using Wikipedia Large Dataset

The hierarchy of WLD is a directed graph (DG), where a
node can have more than one parents. It contains cycles, where
a set of nodes are connected by edges and the cycles only
appear in the intermediate or hidden nodes. Fig. 5 shows an

Polibits, vol. 54, 2016, pp. 61-70

Fig. 6. DAG-Tree.

example of DG, where the double arrow between two nodes,
is the parent of one another. In the WLD, 10,246 cyclic nodes
appear in the intermediate levels with a maximum depth of
13. It contains multiple roots with 11,405 in the hierarchy.

Using this DAG-Tree approach, we refine the hierarchy by
reducing the edges, intermediate nodes, root nodes, and cyclic
nodes from 863,261 to 683,359, 141,559 to 140,703, 11,405
to 10,902, and 10,246 to O respectively.

B. LSHTC Evaluation

Table I shows the results with Pegasos on WMD. We
showed the results with 5 € (0.0,—0.5) and varied 6§ €
(0.00,0.25,0.27,0.32). 8 = —0.5 means that data classified
into negative side to some extent are passed to the child node.
This means that some incorrect assignments are kept in the
candidate sets. However, most of the incorrect classification
are removed after-ward during the global pruning stage. SVM
hyper-parameter C' has been set to 0.5 based on our pilot study.
Table II shows the scores of different weighting approaches
with DCD-SVM. As for DCD-SVM results on WMD in
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1: S M—H—D—A > First Reference Visited-Paths from leaf to root
2: T-M > M parent of T, is in the Visited-paths list in step 1:
3: T-N—H > H parent of N, is in the Visited-paths list in step 1:
4: U-N > N parent of U, is in the Visited-paths list in step 3:
5: U=-0—=I1-D > D parent of 1, is in the Visited-paths list in step 1:
6: V=0 > O parent of V, is in the Visited-paths list in step 5:
7: V-P—J—-E—A > A parent of E, is in the Visited-paths list in step 1:
7. W—P > P parent of W, is in the Visited-paths list in step 7:
8: W—=Q—K—F—B > B parent of F, is a root
9: X—Q > Q parent of X, is in the Visited-paths list in step 8:
10: X—+R—L—F > F parent of L, is in the Visited-paths list in step 8:
11: Y=R > R parent of Y, is in the Visited-paths list in step 10:
Fig. 7. Procedures to generate DAG-Tree hierarchy with a visited-paths list
TABLE I
EXPERIMENTAL RESULTS WITH PEGASOS ON WMD
cC o p 0 Acc EBF LBMaF LBMiF HF
0.5 2 0.0 0.00 0.3955 0.4585 0.2753 0.4393 0.6633
05 2 00 025 04334 0.4840 0.2666 0.4870 0.7015
05 2 00 027 04335 04834 0.2633 0.4870 0.7028
05 2 00 032 04328 04816 0.2552 0.4853 0.7014
0.5 2 =05 0.00 | 02966 0.3749 0.2542  0.2772  0.5469
05 2 -05 0.25| 043838 0.4958 0.2832 0.4951 0.7058
05 2 -05 0.27 | 0.4406 0.4958 0.2773 0.4966  0.7069
05 2 -05 0.32] 04423 04948 0.2669 0.4966 0.7076
TABLE II

DIFFERENT WEIGHTING APPROACHES WITH DCD-SVM oN WMD

Weighting Approach B 0 Acc EBF LBMaF LBMiF HF

IN-DEDUCTIVE + TF -0.5 0.39 | 0.4452 0.4968 0.2664 0.4978 0.7086
IN-DEDUCTIVE + TEIDF -0.5 0.42 | 04284 04764 0.2537 0.4800  0.6943
IN-DEDUCTIVE + TEICF -0.5 042 | 04346 0.4831 0.2592 0.4863 0.6984
IN-DEDUCTIVE + TEIDFEICF -0.5 042 | 04219 04695 0.2481 0.4733  0.6900
IN-DEDUCTIVE + TEICSsF -0.5 0.42 | 04297 04779 0.2544 0.4812  0.6953
IN-DEDUCTIVE + TEIDEICSsF | -0.5 0.42 | 0.4221  0.4697 0.2481 0.4735 0.6899

Table III, when 8 = —0.5 and 6 = 0.39, we obtained the
best accuracy 0.4452. Since the local weight TF in Table II
outperformed other weighting approaches, only this weighting
approach is taken into account for WLD. In addition, the
parameter 3 = —0.5 performed consistently better in different
learning algorithms, thus 8 = —0.5 is taken into account for
the WLD. Table V shows the results with Pegasos on the
WLD, where we obtained the best result 0.3496 using our
system with DAG-Tree hierarchy. The result shows that our
system using DAG-Tree hierarchy outperformed with the given
hierarchy.

Tables IV and VI, summarizes our results with compare
to the top four systems using WMD and WLD respectively.
The result shows that the IN-DEDUCTIVE approach based
system outperformed the other systems participated in the
LSHTC3 challenge as well as in LSHTC4 challenge. Table VII

https://doi.org/10.17562/PB-54-8

illustrates the training and test time spent for the WMD and
WLD. In Table II, Table III, Table V, Table VI, and Table VII
we use C' = 0.5 and o = 2.

C. Discussion

Ioannou [20] summarizes thresholding methods in multi-
label classification. Basically bias S is a threshold that adjusts
PCut [21]. Note that the training phase automatically set bias
b of the decision function Gp.(z) = WpeZ + bye. Setting [
means the classification threshold adjustment, i.e., Gp.(z) =
Wpek + bpe > B, where p and c are parent and child
categories, respectively. It is noticeable in Table II that
the local term weighting approach TF outperformed other
weighting approaches that incorporate global weightings into
local weights for LSHTC.
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TABLE III
COMPARISON OF EFFICIENT ML METHODS ON WMD

Learning Algorithm B8 0 Acc EBF LBMaF LBMiF HF

IN-DEDUCTIVE + DCD-SVM -0.5 0.39 | 0.4452 0.4968 0.2664 0.4978 0.7086
IN-DEDUCTIVE + Pegasos -0.5 0.32 | 04423 0.4948 0.2669 0.4966 0.7076
IN-DEDUCTIVE + SGD-SVM -0.5 0.32 ] 04419 0.4938 0.2641  0.4957  0.7072
IN-DEDUCTIVE + SVMPer/ -0.5 0.32 | 04405 0.4919 0.2623 0.4947 0.7071
IN-DEDUCTIVE + PA -0.5 049 | 04005 0.4512  0.2550 0.4527  0.6673
IN-DEDUCTIVE + ROMMA -0.5 0.15 | 0.3827 04324 0.2296 0.4362 0.5610
IN-DEDUCTIVE + logreg -03 0.14 | 0.3690 0.4235 0.1544 0.4271  0.6688
IN-DEDUCTIVE + logreg-pegasos | 0.5 0.14 | 0.3689  0.4255 0.1644  0.4296  0.6682

TABLE IV
EXPERIMENTAL RESULTS WITH PEGASOS ON WLD

Name C « Ié] 0 Acc EBF LBMaF LBMiF HF

IN-DEDUCTIVE + DG 05 2 =05 037 | 03183 0.381 0.1918 0.3641  0.4291
05 2 —-0.5 038 ] 03495 0.4239 0.1968 0.3946 0.4790

IN-DEDUCTIVE + DAG-Tree | 0.5 2 —0.5 0.39 | 0.3496 0.4235 0.1937 0.3951  0.4773
05 2 —0.5 0.40 | 0.3494 0.4229 0.1907 0.3952 0.4751

TABLE V
COMPARISON WITH TOP FOUR LSHTC3 PARTICIPANTS ON WMD

Name Acc EBF LBMaF LBMiF HF
IN-DEDUCTIVE + DCD-SVM | 0.4452 0.4968 0.2664 0.4978 0.7086
IN-DEDUCTIVE + Pegasos 0.4423  0.4948 0.2669 0.4966  0.7076

IN-DEDUCTIVE + SGD-SVM | 0.4419  0.4938 0.2641  0.4957 0.7072
IN-DEDUCTIVE + SVMPerf 0.4405 0.4919 0.2623 0.4947  0.7071

arthur (Ist) 0.4382  0.4937  0.2674  0.4939  0.7092

coolvegpuff (2nd) 0.4291 0.4824  0.2507 04779  0.6892

TTI (3rd) 0.4200 0.4771 0.2835 0.4725  0.6922

chrishan (4th) 0.4117  0.4768  0.2454  0.4187  0.6766
TABLE VI

COMPARISON WITH TOP FOUR LSHTC4 PARTICIPANTS ON WLD

Name Acc EBF LBMaF LBMiF HF

IN-DEDUCTIVE + Pegasos + DAG-Tree | 0.3495 0.4239 0.1968 0.3946 0.4790

TTI (1st) 0.3185 0.3866  0.1920 0.3644  0.4295

anttip (2nd) 0.3152 0.3682  0.1919 0.3038  0.4546

knn baseline (3rd) 0.2724 0.3472 0.1486 0.3016  0.4616

kensk8er (4th) 0.2714 0.3462 0.1519  0.3002  0.4594
TABLE VII

EFFICIENCY WITH IN-DEDUCTIVE APPROACH

Data Training CPU time | Test CPU time
65,333 models 36,506 leaf categories
svmrerf 13.85 hrs | SVMPerf 7.9m

WMD | Pegasos 3.8 hrs Pegasos 10.2m
TTI [18] 16 hrs dhlee [5] 12.5m
anttip [19] 15 days TTI [18] 10.2m
863,261 models 478,020 leaf categories

WLD | Pegasos + DG 16 days | Pegasos + DG 2 days
683,359 models 478,020 leaf categories
Pegasos + DAG-Tree 2 days Pegasos + DAG-Tree 18 hrs
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It is also noticeable that the DAG-Tree approach not
only drastically decrease the computational cost but also can
significantly improve the system performances. It decreases
the computational cost by reducing the given hierarchy to a
new one. Even though we get less data from intermediate to
top nodes but the IN-DEDUCTIVE approach based system
gets higher accuracy using the proposed DAG-Tree. Since
we first perform the DAG-based approach to train each edge
from leaf to immediate intermediate nodes in the hierarchy,
the original training information remains. Moreover, from
bottom to top intermediate levels we perform the Tree-based
approach to train each edge in the hierarchy based on number
of descendants are associate with a certain parent. Since
large-scale data-set is in concern and for each outer iteration,
we randomly select samples and update weight vectors from
block size— referring to inner iteration, even a less information
in the intermediate nodes can significantly improve the system
performance. Thus, the DAG-Tree is useful to enhance the
HTC for very large-scale hierarchy.

VII. RELATED WORK

TC 1is a typical multi-class single- and multi-label
classification problem. To efficiently solve, Platt [9] proposed a
faster training of SVM using sequential minimal optimization
(SMO) that breaking a very large quadratic programming
optimization problem into a series of smallest possible
problems as an inner loop in each outer iteration. The approach
is generally 1200 and 15 times faster for linear and non-linear
SVMs respectively. Studies to solve multi-class multi-label
classification have been summarized in [22], in three smaller
data sets with maximum labels of 27 in compare to current
front-line of multi-label classification task.

There have been many studies that use local context
in HTC [23], [24], [25]. Chakrabarti et al. [23] proposed
a Naive-Bayes document classification system that follows
hierarchy edges from the root node. Koller et al. [24] applied
Bayesian networks to a hierarchical document classification. In
our approach, we applied efficient learners which have shown
good classification performance with fast training as well as
improved the pruning method.

In LSHTC3, the arthur system [26] successfully applied
meta-classifiers to the LSHTC task. Meta-classifiers can
also be regarded as a sort of pruning. The system
employed Liblinear, Max Entropy classifier, and SVM!9ht,
The meta-classifier with SVM! 9" achieved 0.4381 on the
aspect of accuracy; however relatively slow in compare to
Liblinear and Max Entropy on the aspect of efficiency.

The anttip system [19] employed the ensemble of different
classifiers by introducing Feature-Weighted Linear Regression.
The system also used greedy pruning of the base-classifiers by
ranking hypothesis that iteratively removing a classier from the
ensemble in the development stage. In LSHTC, the system
achieved 0.3152 over the WLD on the aspect of accuracy.

Lee [5] proposed a Multi-Stage Rocchio classification
(MSRC) based on similarity between test documents and

https://doi.org/10.17562/PB-54-8

label’s centroids for large-scale datasets. The system used
greedy search algorithm in the predicted label set and then
compare similarities between test documents and two centroid
to check whether more labels are needed or not. The MSRC
achieved 0.3974, 0.4326, and 0.6783 in terms of accuracy,
LBMiF, and HF respectively for WMD. On the aspect of
efficiency the system is much faster than baseline such as
K-Nearest Neighbor when the expected number of labels per
document are less.

VIII. CONCLUSIONS

The IN-DEDUCTIVE approach based system outperformed
top-group systems in LSHTC3, w.r.t the most of evaluation
metrics in different learning algorithms. This can be attributed
to the bias adjustment S = —0.5 and post pruning. Moreover,
the SVM-based systems with the IN-DEDUCTIVE and the
DAG-Tree approaches also outperformed the LSHTC4’s top-
group systems. We believe that, to handle extreme multi-label
LSHTC problems, the results will make a useful contribution
as an useful performance reference. Our future work includes
the development of much more efficient algorithms for large-
scale IN-DEDUCTIVE approach based system in HTC.
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