An mHealth application to collect and analyze gestational diabetes data

Miguel Torres-Ruiz, Rolando Quintero, Carlos Guzmán Sánchez-Mejorada, Kwok Tai Chui, Magdalena Saldaña-Pérez

Abstract


Nowadays, appropriate lifestyle interventions can reduce the development of Type II Diabetes Mellitus in the Mexican population. Early diagnosis and treatment of this disease can contribute to preventing long-term complications, generating new public health initiatives that reduce the risk of this disease. In this work, we propose using information and communication technologies, particularly mobile devices, to collect information from patients with this condition and treatment follow-up for subsequent evaluation. The goal is to design a healthcare-oriented system with tools for preventing, diagnosing, treating, monitoring, analyzing, and characterizing this disease, transforming how interventions are currently applied. As a first stage, the mobile application's design, development, and concept tests have been addressed in a multi-platform environment for various devices and operating systems such as Android and iOS. We assumed as a hypothesis that mobile health applications (m-health) open up new opportunities to face the current challenges regarding the capacity for care, monitoring, and treatment of patients in clinics in person and other factors that derivatives of the SARS-CoV-2 pandemic have emerged. Thus, it is intended to evaluate the efficacy of an intervention of lifestyle changes compared with the standardized treatment in women who had gestational diabetes as a preventive method for Type II Diabetes Mellitus.

References


T. Kusyanti, F. F. Wirakusumah, F. R. Rinawan, A. Muhith, A. Purbasari, F. Mawardi, I. W. Puspitasari, A. Faza and A. G. Stellata, “Technology-based (Mhealth) and Standard/Traditional maternal care for pregnant woman: a systematic literature review,” Healthcare, vol. 10, no. 7, 2022, pp. 1287, doi: 10.3390/healthcare10071287.

N. Aljohani and D. Chandran, “The adoption of mobile health applications by patients in developing countries: a systematic review,” International Journal of Advanced Computer Science and Applications, vol. 59, no. 5, pp. 16-21, 2021 [Online]. Available: http://hdl.handle.net/10453/150093.

C. Free, G.Phillips, L. Felix, L. Galli, V. Patel and P. Edwards, “The effectiveness of M-health technologies for improving health and health services: a systematic review protocol,” BMC research notes, vol. 3, no. 1, pp. 1-7, 2010, doi: 10.1186/1756-0500-3-250.

A. I. Alzahrani, H. Al-Samarraie, A. Eldenfria, J. E. Dodoo and N. Alalwan, “Users’ intention to continue using mHealth services: A DEMATEL approach during the COVID-19 pandemic,” Technology in society, vol. 68, pp. 101862, 2022, doi: 10.1016/j.techsoc.2022.101862.

D. K. Tracy, M. Tarn, R. Eldridge, J. Cooke, J. D. Calder and N. Greenberg, “What should be done to support the mental health of healthcare staff treating COVID-19 patients?,” The British Journal of Psychiatry, vol. 217, no. 4, 2020, pp. 537-539, doi: 10.1192/bjp.2020.109.

H. Kondylakis, D. G. Katehakis, A. Kouroubali, F. Logothetidis, A. Triantafyllidis, I. Kalamaras, V. Konstantinos and D. Tzovaras, D, “COVID-19 mobile apps: a systematic review of the literature,” Journal of Medical Internet Research, vol. 22, no. 12, 2020, pp. e23170, doi: 10.2196/23170.

E. M. Wendland, M. R. Torloni, M. Falavigna, J. Trujillo, M. A. Dode, M. A. Campos, B. B. Duncan and M. I. Schmidt, “Gestational diabetes and pregnancy outcomes-a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria,” BMC pregnancy and childbirth, vol. 12, no. 23, 2012, pp. 1-13, doi: 10.1186/1471-2393-12-23.

D. Farrar, M. Simmonds, M. Bryant, T. A. Sheldon, D. Tuffnell, S. Golder, F. Dunne, and D. A. Lawlor, “Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis,” BMJ, vol. 354, 2016, doi: 10.1136/bmj.i4694.

D. S. Feig, J. Hwee, B. R. Shah, G. L. Booth, A. S. Bierman and L. L. Lipscombe, “Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a large, population-based study in Ontario, Canada, 1996–2010,” Diabetes care, vol. 37, no. 6, pp. 1590-1596, 2014, doi: 10.2337/dc13-2717.

J. F. Van Den Heuvel, T. K. Groenhof, J. H. Veerbeek, W. W. Van Solinge, A. T. Lely, A. Franx M. N. Bekker, “eHealth as the next-generation perinatal care: an overview of the literature,” Journal of medical Internet research, vol. 20, no. 6, 2018, pp. e202, doi: 10.2196/jmir.9262.

L. M. Yee, J. M. McGuire, S. M. Taylor, C. M. Niznik and M. A. Simon, “Social and environmental barriers to nutrition therapy for diabetes management among underserved pregnant women: a qualitative analysis,” Journal of nutrition education and behavior, vol. 48, no. 3, 2016, pp. 170-180, doi: 10.1016/j.jneb.2015.11.003.

H. R. Murphy, “Intensive glycemic treatment during type 1 diabetes pregnancy: a story of (mostly) sweet success!,” Diabetes Care, vol. 41, no. 8, 2018, pp.1563-1571, doi: 10.2337/dci18-0001.

H. R. Murphy, R. Bell, C. Cartwright, P. Curnow, M. Maresh, M. Morgan, C. Sylvester, B. Young and N. Lewis-Barned, “Improved pregnancy outcomes in women with type 1 and type 2 diabetes but substantial clinic-to-clinic variations: a prospective nationwide study,” Diabetologia, vol. 60, 2017, pp. 1668-1677, doi: 10.1007/s00125-017-4314-3.

C. González, C. Gómez and F. Arcila, “Métodos y Procedimientos de Investigación para la Prevalencia y la Carga del Sobrepeso y la Obesidad,” Investigación Clínica, vol. 60, no. 5, 1093-1101, 2019.

M. Romero-Martínez, T. Shamah-Levy, E. Vielma-Orozco, O. Heredia-Hernández, J. Mojica-Cuevas, L. Cuevas-Nasu and J. Rivera-Dommarco, “Encuesta Nacional de Salud y Nutrición 2018-19: metodología y perspectivas,” Salud Pública de México, vol. 61, 2021, pp. 917-923, doi: 10.21149/11095.

C. Jeppesen, J. K. Kristensen, P. Ovesen and H. T. Maindal, “The forgotten risk? A systematic review of the effect of reminder systems for postpartum screening for type 2 diabetes in women with previous gestational diabetes,” BMC Research Notes, vol. 8, pp. 1-11, 2015, doi: 10.1186/s13104-015-1334-2.

J. E. Hollander and B. G. Carr, “Virtually perfect? Telemedicine for COVID-19,” New England Journal of Medicine, vol. 382, no. 18, pp. 1679-1681, 2020, doi: 10.1056/NEJMp2003539.

H. Almuslim and S. AlDossary, “Models of incorporating telehealth into obstetric care during the COVID-19 pandemic, its benefits and barriers: a scoping review,” Telemedicine and e-Health, vol. 28, no. 1, pp. 24-38, 2022, doi: 10.1089/tmj.2020.0553.

World Health Organization, “WHO guideline: recommendations on digital interventions for health system strengthening: web supplement 2: summary of findings and GRADE tables (No. WHO/RHR/19.7),” 2019.

K. R. Palmer, M. Tanner, M. Davies-Tuck, A. Rindt, K. Papacostas, M. L. Giles, K. Brown, H. Diamandis, R. Fradkin, A. E. Stewart, D. L. Rolnik, A. Stripp, E. M. Wallace, B. W. Mol and R. J. Hodges, “Widespread implementation of a low-cost telehealth service in the delivery of antenatal care during the COVID-19 pandemic: an interrupted time-series analysis,” The Lancet, vol. 398, no. 10294, 2021, pp. 41-52, doi: 10.1016/S0140-6736(21)00668-1.

A. R. Kern-Goldberger and S. K. Srinivas, “Telemedicine in obstetrics,” Clinics in Perinatology, vol. 47, no. 4, pp. 743-757, 2020, doi: 10.1097/GRF.0b013e318290fef0.

S. Kitsiou, G. Paré, M. Jaana, and B. Gerber, “Effectiveness of mHealth interventions for patients with diabetes: an overview of systematic reviews,” PLOS ONE, vol. 12, no. 3, pp. e0173160, 2017, doi: 10.1371/journal.pone.0173160.

W. Glauser, “Virtual care is here to stay, but major challenges remain,” Canadian Medical Association Journal, vol. 192, no. 30, 2020, pp. E868-E869, doi: 10.1503/cmaj.1095884.

K. Sushko, H. T. Menezes, Q. R. Wang, K. Nerenberg, D. Fitzpatrick-Lewis and D. Sherifali, “Patient-reported benefits and limitations of mobile health technologies for diabetes in pregnancy: A scoping review,” Canadian Journal of Diabetes, vol. 47, no. 1, 2023, pp. 102-113, doi: 10.1016/j.jcjd.2022.08.001.

A. King and R. B. Hoppe, “Best practice for patient-centered communication: a narrative review,” Journal of graduate medical education, vol. 5, no. 3, pp. 385-393, 2013, doi: 10.4300/JGME-D-13-00072.1.

A. Carrandi, Y. Hu, S. Karger, K. E. Eddy, J. P. Vogel, C. L. Harrison and E. Callander, “Systematic review on the cost and cost-effectiveness of mHealth interventions supporting women during pregnancy,” Women and Birth, vol. 36, no. 1, pp. 3-10, 2023, doi: https://doi.org/10.1016/j.wombi.2022.03.007.

L. M. Yee, K. Leziak, J. Jackson, C. Niznik, R. Saber, C. Yeh and M. A. Simon, “SweetMama: Usability assessment of a novel mobile application among low-income pregnant people to assist with diabetes management and support,” Diabetes Spectrum, vol. 36, no. 2, 2023, pp. 171-181, doi: 10.2337/ds22-0014.

N. Fareed, C. Swoboda, P. Singh, E. Boettcher, Y. Wang, K. Venkatesh and R. Strouse, “Developing and testing an integrated patient mHealth and provider dashboard application system for type 2 diabetes management among Medicaid-enrolled pregnant individuals based on a user-centered approach: Mixed-methods study,” Digital Health, vol. 9, 2023, doi: 10.1177/20552076221144181.

E. Pustozerov, P. Popova, A. Tkachuk, Y. Bolotko, Z. Yuldashev and E. Grineva, “Development and evaluation of a mobile personalized blood glucose prediction system for patients with gestational diabetes mellitus,” JMIR mHealth and uHealth, vol. 6, no. 1, 2018, pp. e9236, doi: 10.2196/mhealth.9236.

D. I. Chiarello, F. Pardo, J. Moya, M. Pino, A. Rodríguez, A. M. E. Araneda, A. Bertini and J. Gutiérrez, “An mHealth Intervention to Reduce Gestational Obesity (mami-educ): Protocol for a Randomized Controlled Trial,”. JMIR Research Protocols, vol. 12, no. 1, pp. e44456, 2023, doi: 10.2196/44456.

L. Mackillop, J. E. Hirst, K. J. Bartlett, J. S. Birks, L. Clifton, A. J. Farmer, L. Tarassenko, “Comparing the efficacy of a mobile phone-based blood glucose management system with standard clinic care in women with gestational diabetes: randomized controlled trial,” JMIR mHealth and uHealth, vol. 6, no. 3, 2018, pp. e9512, doi: 10.2196/mhealth.9512.

P. Popova, A. Anopova, E. Vasukova, A. Isakov, A. Eriskovskaya, A. Degilevich, E. Pustozerov, A. Tkachuk, K. Pashkova, N. Krasnova, M. Kokina, I. Nemykina, T. Pervunina, O. Li, E. Grineva and E. Shlyakhto, “Trial protocol for the study of recommendation system DiaCompanion with personalized dietary recommendations for women with gestational diabetes mellitus (DiaCompanion I),” Frontiers in Endocrinology, vol. 14, 2023, pp. 1168688, doi: 10.3389/fendo.2023.1168688.

H. Y. Lu, X. Ding, J. E. Hirst, Y. Yang, J. Yang, L. Mackillop and D. Clifton, “Digital health and machine learning technologies for blood glucose monitoring and management of gestational diabetes,” IEEE Reviews in Biomedical Engineering, vol. 17, 2023, pp. 98-117, doi: 10.1109/RBME.2023.3242261.

E. A. Pustozerov, A. S. Tkachuk, E. A. Vasukova, A. D. Anopova, M. A. Kokina, I. V. Gorelova, T. M. Pervunina, E. N. Grineva and P. V. Popova, “Machine learning approach for postprandial blood glucose prediction in gestational diabetes mellitus,” IEEE Access, 8, 2020, pp. 219308-219321, doi: 10.1109/ACCESS.2020.3042483.

J. E. Epping-Jordan, S. D. Pruitt, R. Bengoa and E. H. Wagner, “Improving the quality of health care for chronic conditions,” BMJ Quality & Safety, vol. 13, no. 4, pp. 299-305, 2004, doi: 10.1136/qshc.2004.010744.


Refbacks

  • There are currently no refbacks.